To evaluate the environmental conditions of the valorization, the phys的繁體中文翻譯

To evaluate the environmental condi

To evaluate the environmental conditions of the valorization, the physical conditions (pH, dissolved oxygen, and ORP) were monitored for approximately seven days after treatment (Fig. 2). The changes in pH and dissolved oxygen in the solid wastes treated by KBM-1 were not different from those of the control (no treatment). However, overall, the ORP was lower in the KBM-1-treated group than in the control group, and thus, it was assumed that KBM-1 can induce reducing conditions in which more electron donors were generated.In the valorization of the RAS solid wastes by KBM-1, the removal of TCOD (3,420 mg/L) after KBM-1 treatment was 16% after 12 days, while that of the control was 28% (Fig. 3). Likewise, a higher removal of SCOD (1,260 mg L−1) was observed in the control (62%) compared with that of the KBM-1 treatment (48%). These results indicate that the production and maintenance of organics (sugars, fatty acids, and amino acids) in the KBM-1 treatment were better than that in the control, and these organics can be used as electron donors in the denitrification system of an RAS.During the valorization of the RAS solid wastes by KBM-1, an increased removal efficiency (14%) was shown for TN (145 mg L−1) in 12 days, while the maximal removal efficiency (8%) was observed after four days in the control (Fig. 4). An increased removal efficiency of ammonium-N (54%; 83 mg L−1 as an initial concentration) was shown 12 days after treatment, while the control had a maximal removal efficiency (7%) after eight days. It was assumed that ammonium-N was removed through the process of biological oxidation and volatilization owing to aeration. An increased removal efficiency (41%) of nitrate (NO3- - N; 22 mg L−1) was observed two days after treatment, while the maximal removal efficiency (16%) was shown in the control after four days, indicating the effectiveness of the KBM-1 treatment for nitrate removal. In this case, organic acid production and denitrification rates were high in the initial stage (two days). Nitrate seemed to be removed through the process of biological denitrification utilizing the organic acids as an electron acceptor. The valorization process can be optimized to degrade wastes and maximally produce organic acids to be used as internal electron donors for the denitrification process within an RAS.
0/5000
原始語言: -
目標語言: -
結果 (繁體中文) 1: [復制]
復制成功!
To evaluate the environmental conditions of the valorization, the physical conditions (pH, dissolved oxygen, and ORP) were monitored for approximately seven days after treatment (Fig. 2). The changes in pH and dissolved oxygen in the solid wastes treated by KBM-1 were not different from those of the control (no treatment). However, overall, the ORP was lower in the KBM-1-treated group than in the control group, and thus, it was assumed that KBM-1 can induce reducing conditions in which more electron donors were generated.<br>In the valorization of the RAS solid wastes by KBM-1, the removal of TCOD (3,420 mg/L) after KBM-1 treatment was 16% after 12 days, while that of the control was 28% (Fig. 3). <br>Likewise, a higher removal of SCOD (1,260 mg L−1) was observed in the control (62%) compared with that of the KBM-1 treatment (48%). <br>These results indicate that the production and maintenance of organics (sugars, fatty acids, and amino acids) in the KBM-1 treatment were better than that in the control, and these organics can be used as electron donors in the denitrification system of an RAS.<br>During the valorization of the RAS solid wastes by KBM-1, an increased removal efficiency (14%) was shown for TN (145 mg L−1) in 12 days, while the maximal removal efficiency (8%) was observed after four days in the control (Fig. 4). An increased removal efficiency of ammonium-N (54%; 83 mg L−1 as an initial concentration) was shown 12 days after treatment, while the control had a maximal removal efficiency (7%) after eight days. <br>It was assumed that ammonium-N was removed through the process of biological oxidation and volatilization owing to aeration. An increased removal efficiency (41%) of nitrate (NO3- - N; 22 mg L−1) was observed two days after treatment, while the maximal removal efficiency (16%) was shown in the control after four days, indicating the effectiveness of the KBM-1 treatment for nitrate removal. <br>在這種情況下,有機酸的生產和脫氮率分別在初始階段(2天)的高。硝酸鹽似乎通過利用有機酸作為電子受體的生物反硝化的處理中除去。<br>的物價穩定措施方法可以被優化以降解廢物和最大限度產生有機酸被用作用於RAS內反硝化過程內電子給體。
正在翻譯中..
結果 (繁體中文) 2:[復制]
復制成功!
塔龍(1981年)提出了兩種戰略:"語言使用戰略"<br>和"語言學習策略"。她將"語言使用策略"分為<br>兩類:"溝通戰略"和"生產戰略"。<br>"溝通戰略"是指兩個對話者共同嘗試達成一致<br>在必要意義結構似乎不是<br>共用;例如,轉述、轉讓、回避。"生產戰略",另一方面<br>手,是一個嘗試使用自己的語言系統有效和清晰,與<br>最少的努力;簡化、排練、話語規劃等。"語言<br>學習策略"是發展語言和社會語言學的嘗試<br>目的語言的能力;記憶、重複等。的<br>"語言使用策略"與"語言學習策略"的區別<br>在於學習者是否使用任何策略來<br>通信,或不。也就是說,"語言使用策略"不用於<br>發展語言和社會語言能力的目的,但用於<br>溝通目的;而"語言學習策略"則不用於<br>114<br>[+)<br>114<br>採取或故意的行動,學生採取,以促進<br>語言和內容領域資訊的學習和回憶。歐麥利<br>和查莫特(1990年)進一步指出,LLS是特殊的想法或<br>個人用來説明他們理解、學習或保留新行為的行為<br>資訊。牛津(1990年)說,學習戰略是具體行動<br>採取使學習更容易,更快,更愉快,更<br>自主指導,更有效,更容易轉移到新的情況。<br> 在LLS研究中,LLS的定義是最基本、最重要的問題。<br>查莫特(1987年)、奧馬利和查莫特(1990年)和牛津的定義<br>(1990) 在指出 LLS 的內嵌因素時類似:<br>LLS 包括以及學員使用 LLS 的目的。<br>三. LLS的分類<br>塔羅內<br>塔龍(1981年)提出了兩種戰略:"語言使用戰略"<br>和"語言學習策略"。她將"語言使用策略"分為<br>兩類:"溝通戰略"和"生產戰略"。<br>"溝通戰略"是指兩個對話者共同嘗試達成一致<br>在必要意義結構似乎不是<br>共用;例如,轉述、轉讓、回避。"生產戰略",另一方面<br>手,是一個嘗試使用自己的語言系統有效和清晰,與<br>最少的努力;簡化、排練、話語規劃等。"語言<br>學習策略"是發展語言和社會語言學的嘗試<br>目的語言的能力;記憶、重複等。的<br>"語言使用策略"與"語言學習策略"的區別<br>在於學習者是否使用任何策略來<br>通信,或不。也就是說,"語言使用策略"不用於<br>發展語言和社會語言能力的目的,但用於<br>溝通目的;而"語言學習策略"則不用於<br><br>溝通的目的,但為了發展語言和<br>社會語言能力。<br> 這種區別可以理解為分類的想法,但很難<br>來區分他們在現實生活中。例如,很難說學習者<br>當他/她使用溝通策略時沒有任何學習目的<br>(塔馬達,1996年)。
正在翻譯中..
結果 (繁體中文) 3:[復制]
復制成功!
為了評估valorization的環境條件,在處理後大約7天內對物理條件(pH、溶解氧和ORP)進行監測(圖2)。KBM-1處理後的固體廢物pH值和溶解氧的變化與對照組(未處理)無明顯差异。然而,總的來說,KBM-1治療組的ORP低於對照組,囙此,我們認為KBM-1可以誘導產生更多電子供體的還原條件。<br>在KBM-1對RAS固體廢物的穩定化處理中,KBM-1處理後12d的TCOD去除率為16%,對照組為28%(圖3)。<br>同樣,對照組(62%)的SCOD去除率(1260 mg L-1)高於KBM-1治療組(48%)。<br>這些結果表明,KBM-1處理的有機物(糖、脂肪酸和胺基酸)的產生和維持優於對照,這些有機物可作為RAS反硝化系統的電子供體。<br>在KBM-1對RAS固體廢物進行valorization的過程中,TN(145 mg L-1)在12天內的去除率(14%)新增,而對照組在4天后的去除率(8%)達到最大(圖4)。處理12天后,氨氮的去除率(54%;83 mg L-1作為初始濃度)新增,而對照組在8天后的去除率最大(7%)。<br>認為氨氮是通過曝氣生物氧化和揮發過程去除的。處理後兩天,硝酸鹽(NO3--N;22mg L-1)的去除率(41%)新增,而對照組在處理後四天的去除率(16%)最大,表明KBM-1處理對硝酸鹽的去除有效。<br>在這種情況下,有機酸的產生和反硝化速率在初始階段(兩天)較高。硝酸鹽似乎是利用有機酸作為電子受體通過生物反硝化過程去除的。<br>可以優化valorization過程以降解廢物並最大限度地產生有機酸,用作RAS內反硝化過程的內部電子供體。<br>
正在翻譯中..
 
其它語言
本翻譯工具支援: 世界語, 中文, 丹麥文, 亞塞拜然文, 亞美尼亞文, 伊博文, 俄文, 保加利亞文, 信德文, 偵測語言, 優魯巴文, 克林貢語, 克羅埃西亞文, 冰島文, 加泰羅尼亞文, 加里西亞文, 匈牙利文, 南非柯薩文, 南非祖魯文, 卡納達文, 印尼巽他文, 印尼文, 印度古哈拉地文, 印度文, 吉爾吉斯文, 哈薩克文, 喬治亞文, 土庫曼文, 土耳其文, 塔吉克文, 塞爾維亞文, 夏威夷文, 奇切瓦文, 威爾斯文, 孟加拉文, 宿霧文, 寮文, 尼泊爾文, 巴斯克文, 布爾文, 希伯來文, 希臘文, 帕施圖文, 庫德文, 弗利然文, 德文, 意第緒文, 愛沙尼亞文, 愛爾蘭文, 拉丁文, 拉脫維亞文, 挪威文, 捷克文, 斯洛伐克文, 斯洛維尼亞文, 斯瓦希里文, 旁遮普文, 日文, 歐利亞文 (奧里雅文), 毛利文, 法文, 波士尼亞文, 波斯文, 波蘭文, 泰文, 泰盧固文, 泰米爾文, 海地克里奧文, 烏克蘭文, 烏爾都文, 烏茲別克文, 爪哇文, 瑞典文, 瑟索托文, 白俄羅斯文, 盧安達文, 盧森堡文, 科西嘉文, 立陶宛文, 索馬里文, 紹納文, 維吾爾文, 緬甸文, 繁體中文, 羅馬尼亞文, 義大利文, 芬蘭文, 苗文, 英文, 荷蘭文, 菲律賓文, 葡萄牙文, 蒙古文, 薩摩亞文, 蘇格蘭的蓋爾文, 西班牙文, 豪沙文, 越南文, 錫蘭文, 阿姆哈拉文, 阿拉伯文, 阿爾巴尼亞文, 韃靼文, 韓文, 馬來文, 馬其頓文, 馬拉加斯文, 馬拉地文, 馬拉雅拉姆文, 馬耳他文, 高棉文, 等語言的翻譯.

Copyright ©2024 I Love Translation. All reserved.

E-mail: