PARTICULATE MATTER < 10 #m (PM10) AND TOTALSUSPENDED PARTICULATES (TSP的繁體中文翻譯

PARTICULATE MATTER < 10 #m (PM10) A

PARTICULATE MATTER < 10 #m (PM10) AND TOTAL
SUSPENDED PARTICULATES (TSP) IN URBAN, RURAL AND
ALPINE AIR IN SWITZERLAND
CH. MONN, i" O. BRAENDLI,:~ G. SCHAEPPI,t CH. SCHINDLER,§
U. ACKERMANN-LIEBRICH,§ PH. LEUENBERGER¶ and SAPALDIA TEAM
i" Federal Institute of Technology, Institute for Hygiene and Applied Physiology, Clausiusstr. 25, CH-8092
Ziirich, Switzerland; :~ Ziircher H6henklink Wald, CH-8636 Faltigberg, Switzerland; § Institute for Social
and Preventive Medicine, Steinengraben 49, CH-4051 Basle, Switzerland; ¶ Centre Hospitalier
Universitaire Vaudois, Rue de Bugnon, CH-1011 Lausanne, Switzerland

Abstract—
Ambient concentrations of particulate matter of less than 10 μm aerodynamic diameter were measured in Switzerland for a 1 year period in 1993 at a dozen urban, rural and alpine sites. PM10 concentrations ranged between 10 μgm -a (alpine) and 33 μgm -3 (urban). Highest concentrations were found at Lugano, in the south of the Alps, and in urban sites of the Swiss Plateau (350-670 m.s.l.). Rural levels were one-third lower than the urban levels and relatively homogeneously distributed. Alpine sites showed considerably lower levels. The ratios between PM1o and TSP were found to be between 0.6 and 0.75, and the highest ratios were found in the most polluted urban sites. Seasonal variation of particulate pollution showed peak levels during winter and autumn, mainly during cold temperature-inversions.
Statistical analyses have shown a good correlation between PM10 and NO z and SO 2, and TSP in urban areas.

1. INTRODUCTION
Recent epidemiological studies have shown that suspended particulate matter considerably influences respiratory health. Associations between suspended particulate matter and lung function parameters, respiratory symptoms and mortality have been found (Braun et al., 1992; Pope and Dockery, 1992; Dockery et al., 1993). Sino," 1991, a study in Switzerland (SAPALDIA: Swiss Study on Air Pollution and Lung Diseases in Adults) has investigated the relationships between prevalence of chronic lung diseases and longterm exposure to ambient air pollution.
In epidemiological studies, respiratory healthrelated effects were found for TSP and distinct finer fractions (e.g. PMlo, PM2.s). Respiratory health effects are biologically expected to be associated with particles smaller than 10#m passing the nose and entering lung alveoli. In addition to the particle size, the number of inhaled particles can be of great importance: a change of the median particle diameter from 1 to 0.1 #m increases the number of particles by more than a factor of a thousand for a constant mass fraction. This can cause problems in the macrophage clearing mechanism. Macrophage clearing is more efficient for a smaller number of larger particles than for very high numbers of fine particles (Kreyling,1994).
Total suspended particle mass fraction does not seem to be the best parameter for the explanation of respiratory diseases; it can, however, be a good indicator if the particle size distribution does not vary greatly between regions.
In the U.S.A., an air quality standard for PMto (annual mean: less than 50 #g m-3) was introduced in the late eighties because of its known adverse effect on the human respiratory system. It is assumed that PMto represents anthropogenic pollution, whilst the origin of larger particles is mainly natural. As well as the size distribution, chemical composition (e.g. acidity, sulphates, nitrates, PAHs) of particles can induce health-related effects (Spengler et al., 1990). The greatest proportion of these chemicals is found within the PM10 fraction.
Within SAPALDIA, air pollutants and meteorological factors were measured routinely at continuously operated monitoring sites. Some sites have a long tradition of monitoring TSP and sulphur dioxide dating back to the mid-seventies. In 1987, after introducing new air quality standards for Switzerland, more than two dozen continuous monitoring sites, mainly for gaseous pollutants, were installed. The air quality standard for TSP was set at 70/zg m-3 (annual mean) which was not exceeded in the last few years. Whilst for gaseous pollutants the measuring techniques were standardised, the measuring methods for total suspended particulates varied greatly between different sites. Therefore, interpretations on regional differences in TSP levels have to be made carefully.
In 1993, a PM10 measuring programme was initiated in order to quantify pollution levels at sites reflecting differences in climate and gaseous pollution.
As we used identical sampling devices in all places,uncertainties in particulate pollution derived from the use of different techniques were removed. As fine particles undergo long-range transport, a similarity in PM10 levels at rural sites was expected.
The major objectives of the PM10 measuring programme during 1993 were as follows:
• to quantify PM10 levels in urban, rural and alpine air and their seasonal variation;
• to assess the fraction of PM10 within TSP and its variation over sites and time;
• to analyse correlations between other air pollutants and meteorological factors.

2. EXPERIMENTAL
Study sites: Figure 1 gives the map of the PM10 measuring sites. Eight of the regions are SAPALDIA study sites (underlined). In addition, PM10 data from three sites of an additional study (SCARPOL: Swiss Study on Childhood Allergy and Respiratory Symptoms with Respect to Pollution, Climate and Pollen) are presented (Langnan, Ziirich, Berne).
Monitors for PMlo were installed at fixed site monitoring stations in SAPALDIA. Measuring sites can be grouped into three major categories: urban and suburban regions (Lugano, Geneva, Basle, Berne, Ziirich, Aarau), rural regions (Binningen, Wald, Payerne, Langnau) and alpine regions (Davos, Montana).
Detailed description of monitoring sites--Aarau: town centre (383 m.s.l, rooftop, 25 m above ground), Basle (St. Johann): town centre, local road (3 m above ground, 260 m.s.l.); Binningen (dose to Basle: rural/suburban, hill, 3 m.a.g.,
300m.s.l.); Davos: outside town on flat valley plateau (3 m.a.g., 1580 m.s.l.); Berne: University of Berne, Terrace (2 m.a.g., 533 m.s.l.); Geneva: town centre, residential/office area, local road (3 m, 380 m.s.l.); Lugano: town centre, local road (3 m.a.g., 280 m.s.1.); Montana: remote on slope near forest (3 m.a.g., 1350 m.s.1.); Wald: outside village, hill slope, no road (3 m.a.g., 630 m.s.l.); Ziirich: close to town centre, local road (5 m.a.g., 460 m.s.l.); Payerne: outside village, no road (2.5 m.a.g., 460 m.s.l.); Langnau: rural, no road (2 m.a.g., 700 m.s.l.) PMt o measurements: PM10 was determined using sharpcut, low-volume cascade impactors (MEM: micro environmental monitors) which were developed at the Harvard School of Public Health. This method has been used in other U.S. studies (Marple et al., 1987; Lioy et al., 1988). Air is drawn through a two-stage impaction inlet, where particles greater than 10 #m are collected. Smaller particles pass the impaction stages and are collected on Teflon filters (Type Gelman Sciences PTFE R2PJ041, pore size 2 #m, diameter 41 mm). The air flow was 4 ~' min- 1. The sampling period was one week. Teflon filters were stored in an environmental chamber with constant air humidity (50% relative humidity) and at temperatures between 20 and 23°C. Filters were weighed before exposure (Mettler: limit of detection 0.01 mg, precision _+ 5%). After exposure, the filters were dried in a dry chamber (silica gel) for a minimum of 24 h and then stored in the environmental chamber for a minimum of 24 h before final weighing. Measurements took place between the 4th of January 1993 and the 4th of January 1994. At Basle, the monitoring period was between Febuary 1993 and February 1994.
PM10 concentrations were calculated for a standard atmosphere on the Swiss Plateau for 950 mbar and 283 K.
TSP measurements and gaseous measurement: Different techniques were used for measuring TSP. We will present TSP data only for SAPALDIA sites, where known technology, such as "High-Vol sampling" (Digitel, for 24 hourly means on glass fibre filters), beta attenuation (FAG, continuous monitor) and a tapered element oscillating microbalance (TEOM) were used. High volume samplers were run at a volume of 40 m a h- 1, the other monitors with a flow of 1-3 m 3 h- 1. The treatment of glass fibre filters was similar to the treatment of PM10 Teflon filters. From these data, daily means were calculated.
In order to compare data with PM10 levels, weekly averages were computed. When more than three days of any week was missing, the week was excluded.
(Instruments used in the SAPALDIA study during 1993-- "Digitel": Binnlngen, Geneva, Ziirich, Payerne, Lugano; High-Vol. self construction: Aarau. "FAG": Davos, "TEOM': Wald. "Elecos": Montana.) Analyses from technical field comparison studies between these monitors showed that data from Digitel and FAG monitor corresponded within a range of _+ 15%. Data from TEOM were always lower than for the other monitors. This monitor is actually designed for PM10 measurements. It can be run with an inlet for TSP but field experiments showed readings much lower.
The instrument readings were similar to monitors determining PM10 mass fraction. Readings were about 30% lower
than for the other TSP monitors. As these observations were consistent, we reassessed the Wald TSP data by multiplying
TEOM readings with a factor of 1.4.
Gaseous pollutant~; were measured using standard techniques: SO2 (fluorescence: "Monitor Labs", "Horiba"), NOx (chemiluminescence: "Monitor Labs", "Horiba"), O 3 (UV absorption: "Monitor Labs").
Meteorological parameters for air temperature, relative humidity, global radiation and wind speed were obtained from the Swiss Network of Meteorology (Swiss Institute for Meteorology) which uses standard technology. At Wald, air temperature and relative humidity were measured at the local air pollution monitor.
Statistical analysis: Statist
0/5000
原始語言: -
目標語言: -
結果 (繁體中文) 1: [復制]
復制成功!
顆粒物 < 10 #m (PM10) 和總懸浮顆粒物 (TSP) 在城市、 農村和高山空氣在瑞士通道 MONN 我"O.BRAENDLI: ~ G.SCHAEPPI,t 叢集辛德勒,§美國阿克曼-利布裡希,§ 博士 LEUENBERGER¶ 和 SAPALDIA 的團隊我"聯邦研究所的技術、 衛生和研究所應用的生理學,Clausiusstr。25,CH-8092Ziirich,瑞士;: ~ Ziircher H6henklink 沃爾德,CH 8636 Faltigberg,瑞士;§ 社會研究所和預防醫學,49,Steinengraben CH 4051 巴塞爾,瑞士;¶ 中心醫院十三區 Vaudois,Rue de Bugnon,CH-1011年洛桑,瑞士抽象 — —1993 年 1 年期在十幾個城市、 農村和高山地盤測量在瑞士空氣中小於 10 微米空氣動力學直徑的顆粒物的濃度。PM10 濃度介於 10 μgm-a (高山) 和 33 μgm-3 (城市)。在阿爾卑斯山,南部和瑞士高原 (350-670 m.s.l.) 城市地點在 Lugano,發現最高的濃度。農村水準低於城市水準的三分之一,並分佈相對均勻。高山的網站顯示顯著較低水準。PM1o 和 TSP 之間的比率被發現 0.6 至 0.75,和最高的比率在污染最嚴重的城市遺址被發現。顆粒物污染的季節變化在冬季和秋季,主要發生在冷的溫度反轉顯示峰值水準。統計分析表明在城市地區 PM10 和沒有 z 和如此 2,TSP 之間的良好關係。1.介紹最近的流行病學研究表明懸浮顆粒物有較大影響呼吸系統的健康。之間的關聯懸浮微粒物質和肺功能參數、 呼吸道症狀和死亡率已被發現 (布勞恩等人,1992 年;教皇和海豹,1992 年;多克裡 et al.,1993年)。中,"1991 年,瑞士的一項研究 (SAPALDIA: 瑞士研究空氣污染和肺部疾病成人) 慢性肺疾病患病率和長期暴露于環境空氣污染之間的關係進行了調查。在流行病學研究中,呼吸 healthrelated 效應被發現 TSP 和不同細分數 (如 PMlo、 PM2.s)。呼吸系統健康的影響生物預計將與顆粒小於 10 #m 通過鼻子和進入肺泡。除了顆粒尺寸,吸入粒子數目可以具有重要意義: 從 1 到 0.1 #m 的中位數粒徑變化增加粒子數目由一個多因素的恒定的品質分數為一千。這可以導致巨噬細胞清除機制問題。巨噬細胞清除是更有效的數量較少的較大的顆粒比為非常高數量的細顆粒 (克,1994年)。總懸浮顆粒物品質分數似乎不是呼吸系統疾病; 解釋的最佳參數然而,可以很好的指標如果粒子大小分佈卻變化不大區域之間。在美國,空氣品質標準為年初 (年平均: 小於 50 #g m-3) 介紹了八十年代末期由於其已知對人體呼吸系統的不利影響。它被假設年初表示匯的人為污染,而較大粒子的起源是主要自然。細微性分佈,以及微粒的化學成分 (如酸度、 硫酸鹽、 硝酸鹽、 多環芳烴) 能誘導健康相關效應 (斯賓格勒 et al.,1990年)。這些化學物質的最大比例是 PM10 分數內發現的。在 SAPALDIA 內, 空氣污染物和氣象因素測定經常在不斷經營監測網站。有些網站擁有悠久的監測 TSP 和空氣中的二氧化硫追溯到七十年代中期。1987 年後引入新的空氣品質標準,瑞士,, 連續 20 多個監測點,主要為氣態污染物,安裝了。空氣品質標準的求解 tsp 問題被設定在 70/zg m-3 (年平均) 不超過在過去的幾年。雖然為氣態污染物測量技術進行標準化,總懸浮粒子的測量方法差別很大不同網站之間。因此,對 TSP 水準區域差異的解釋必須時應謹慎。1993 年,為了量化污染程度反映了不同的氣候和氣態污染地點發起 PM10 測量方案。我們在所有的地方使用相同的採樣設備,顆粒物污染來自使用不同技術的不確定性被去除了。細顆粒進行遠距離遷移,預期會 PM10 水準在農村地區的相似性。PM10 1993 年測量方案的主要目標如下:• 如果要定量 PM10 水準在城市、 農村和高山空氣和季節消長規律;• 如果要評估的分數 PM10 TSP 和其變化內地點和時間;• 分析其他空氣污染物和氣象因素之間的相關性。2.實驗研究網站: 圖 1 給出了匹配的 PM10 測量網站的電子地圖。8 個地區是 SAPALDIA 研究地點 (帶底線)。此外,PM10 資料從三個地點,另一項研究 (SCARPOL: 瑞士研究兒童過敏和呼吸道症狀污染、 氣候和花粉) 介紹 (龍,Ziirich,伯恩)。PMlo 顯示器安裝在固定監測站在 SAPALDIA 的網站。測量網站可以分為三個主要方面: 城市和城郊地區 (Lugano、 日內瓦、 巴塞爾、 伯恩、 Ziirich、 Aarau)、 比寧根、 沃爾德、 佩耶納 (Langnau) 的農村地區和高山地區 (達沃斯,蒙大拿州)。詳細說明監測網站 — — Aarau: 市中心 (383 m.s.l,屋頂,地面 25 米)、 巴塞爾 (聖約翰): 市中心,當地的道路 (3 米以上地面,260 m.s.l.);比寧根 (巴塞爾劑量: 農村或郊區,山,3 m.a.g.,300m.s.l);。達沃斯: 城外高原平坦河谷 (3 m.a.g.,1580 m.s.l.);伯恩: 伯恩大學,露臺 (2 m.a.g.,533 m.s.l.);日內瓦: 市中心、 住宅/辦公區、 地方道路 (3m,380 m.s.l.);Lugano: 市中心區,區內道路 (3 m.a.g.,280 m.s.1);蒙大納州: 遠端對邊坡附近森林 (3 m.a.g.,1350 m.s.1);沃爾德: 外村、 山坡、 沒有道路 (3 m.a.g.,630 m.s.l.);Ziirich: 靠近城市中心,當地的道路 (5 m.a.g.,460 m.s.l.);佩耶納: 外面沒有路村 (2.5 m.a.g.,460 m.s.l.);Langnau: 農村,無路 (2 m.a.g.,700 m.s.l.)光電倍增管 o 測量: PM10 決心用 sharpcut,低量級聯撞擊 (MEM: 微環境監視器) 被開發在哈佛大學公共衛生學院。此方法已被其他美國研究 (普爾 et al.,1987 年;一丁點 et al.,1988年)。空氣是通過一個兩階段嵌塞入口,在那裡收集粒子大於 10 #m 制定的。更小的粒子經過衝擊階段,有鐵氟龍濾網收集的 (類型 Gelman 科學聚四氟乙烯 R2PJ041,孔隙大小 2 #m,直徑 41 毫米)。空氣流量是 4 ~' min-1。採樣週期為一周。鐵氟龍篩檢程式被儲存在環境室與恒定空氣濕度 (相對濕度為 50%) 和溫度之間 20 和 23 ° c。篩選器被稱之前曝光 (梅特勒: 極限檢測 0.01 毫克,精度 _ + 5%)。曝光後,篩檢程式是乾燥,最低 24 h 幹的分庭 (矽膠),然後儲存在最低 24 h 環境分庭最後權衡之前。測量是 1993 年 1 月 4 日和 1994 年 1 月 4 日之間發生的。在巴塞爾,監測期是 1993 年 2 月至 1994 年 2 月。PM10 濃度計算為 950 毫巴瑞士高原和 283 K.的標準大氣TSP 測量和氣體測量: 不同的技術被用於測量 TSP。我們將目前 TSP 資料僅為 SAPALDIA 的網站,在已知的技術,如"高 Vol 採樣"(Digitel,24 小時手段對玻璃纖維篩檢程式),使用 β 衰減 (FAG,連續監測) 和振盪天平 (天平) 錐形的元素。高容量取樣器運行在卷 40 m h-1,其他監視器與流量 1-3 m 3 h-1。玻璃纖維篩檢程式的處理是類似 PM10 鐵氟龍篩檢程式的治療。從這些資料,計算了每日的手段。為了將資料與 PM10 水準比較,每週平均計算。失蹤三天以上的任何一周時,周被排除了。("Digitel"在 1993 年--SAPALDIA 研究中使用的儀器: Binnlngen,Ziirich,Payerne,日內瓦 Lugano;高卷自身建設: Aarau。"FAG": 達沃斯論壇上,"天平: 沃爾德."Elecos": 蒙大拿。)從這些顯示器之間技術領域比較研究分析表明,從 Digitel 和 FAG 監視器資料對應的 _ + 15%範圍內。從天平資料都低於其他監視器。這台顯示器實際上是 PM10 測量設計的。求解 tsp 問題運行與入口但田間試驗顯示的讀數低得多。儀錶讀數,類似于顯示器確定 PM10 品質分數。讀數大約下降了 30%比對於其他 TSP 監測。由於這些意見都一致,我們重新評估 Wald TSP 資料乘以天平讀數與 1.4 倍。氣態污染物 ~;採用標準技術測定: SO2 (螢光:"監測實驗室"、"堀場"),氮氧化物 (化學發光法:"監測實驗室"、"堀場"),O 3 (紫外吸收:"監控實驗室")。空氣溫度、 相對濕度、 全球輻射和風速的氣象參數得出從瑞士網路的氣象學 (瑞士氣象學研究所) 使用的標準技術。在瓦爾德,當地空氣污染監測測量空氣溫度和相對濕度。統計分析: 統計
正在翻譯中..
結果 (繁體中文) 2:[復制]
復制成功!
顆粒物<10#M(PM10)和總
懸浮顆粒物(TSP)在城市,農村和
的高山空氣在瑞士
CH。MONN,我“O. BRAENDLI,:〜G. SCHAEPPI,T CH辛德勒
§U. ACKERMANN - LIEBRICH,第PHLEUENBERGER¶和SAPALDIA團隊。
我”聯邦理工學院,學院衛生與應用生理學,Clausiusstr。25,CH-8092
Ziirich,瑞士; :〜Ziircher H6henklink瓦爾德,CH-8636 Faltigberg,瑞士; §研究所社會
與預防醫學,Steinengraben 49,CH-4051瑞士巴塞爾; ¶中心醫院
區大學Vaudois,的Rue de Bugnon,CH-1011瑞士洛桑摘要:對小於10微米的空氣動力學直徑均在十幾個城市,農村和高山站點測得在瑞士有1年的時間在1993年的顆粒物濃度環境。PM10濃度的10μgm-a(高山)和33μgm-3(城市)不等。最高濃度被發現在盧加諾,在阿爾卑斯山南部,並在城市遺址的瑞士高原(350-670 MSL)的。農村水平較市區的水平低三分之一和相對均勻分佈。高山網站顯示相當低的水平。PM1o和TSP之間的比率被發現是0.6和0.75之間,以及最高的比率被發現在大多數污染的城市的網站。顆粒物污染的季節變化表現出最高水平的冬季和秋季,主要是在寒冷的溫度反演。統 ​​計分析顯示,在市區可吸入顆粒物和NO z和SO 2和TSP之間具有良好的相關性。1。引言最近的流行病學研究表明,懸浮粒狀物質大大地影響呼吸健康。懸浮顆粒物和肺功能參數,呼吸道症狀和死亡率之間的關聯已經被發現(Braun等,1992;教皇和Dockery,1992; Dockery等人,1993)。中,“1991年的一項研究在瑞士(SAPALDIA:瑞士研究空氣污染與肺部疾病的成年人)。調查了慢性肺部疾病和長期暴露於空氣污染患病率之間的關係流行病學研究,發現呼吸道健康相關的影響為TSP和不同細的級分(例如PMLO,PM2.s)。在生理預期呼吸健康影響要與顆粒小於10#m的傳遞鼻子和進入肺泡相關聯。除了粒徑,吸入的數目顆粒可以是非常重要的:中值粒徑為1改變到0.1 #m中增加的粒子數通過一千多因子為一個恆定質量分數這可能會導致在巨噬細胞的清除機制問題巨噬細胞。 。清算為比非常高的數字微粒(Kreyling,1994年)的較大顆粒的數量較少的更有效的總懸浮顆粒的質量分數似乎並不對呼吸系統疾病的說明的最佳參數; 它可以,但是,是,如果粒度分佈不地區之間差別很大的一個良好指標。在美國,對於PMTO空氣質量標準(年平均:小於50#G M-3)是在八十年代末推出由於人呼吸系統其已知的不利影響。假定PMTO表示人為污染,而較大的顆粒的來源主要是自然的。以及尺寸分佈,顆粒的化學組成(例如酸度,硫酸鹽,硝酸鹽,多環芳烴)可誘導健康相關的影響(格勒等人,1990)。這些化學品的最大比例的是PM10部分中找到。在SAPALDIA,空氣污染物和氣象要素進行測定,在常規連續運行監測點。有些網站有監測TSP和二氧化硫追溯到七十年代中期的悠久傳統。1987年,推出新的空氣質量標準瑞士後,二十幾個連續的監測點,主要為氣態污染物,進行了安裝。為TSP空氣質量標準被設定在70 /米ZG-3(年平均),其未在過去的幾年裡超過。而對於氣態污染物的測量技術進行了規範,測量方法,總懸浮顆粒物不同站點之間的差別很大。因此,在TSP水平地區差異的解釋必須仔細進行。1993 年,可吸入顆粒物測量程序啟動,以量化的污染水平遺址反映了氣候和氣體污染的差異。正如我們在所有地方使用相同的採樣裝置,除去在從使用不同的技術導出的顆粒物污染的不確定性。作為微粒子進行遠距離傳輸,可吸入顆粒物水平的農村網站相似,預計是在可吸入顆粒物測量計劃在1993年的主要目標如下:• 量化PM10水平在城市,農村和高山空氣和它們的季節變化;• 評估可吸入顆粒物中TSP的比例及其變化過的網站和時間。•分析其他空氣污染物和氣象因素之間的相關性2。實驗研究 ​​地點:圖1給出了可吸入顆粒物測量點的地圖。該地區中的八個都SAPALDIA研究網站(下劃線)。另外,從附加的研究(SCARPOL:對於污染,氣候和花粉瑞士研究兒童過敏和呼吸道症狀)三個站點PM10數據的情況下(Langnan,Ziirich,伯爾尼)。監視器的PMLO被安裝在固定的網站監測站在SAPALDIA。測量部位可分為三大類:城市和郊區地區(盧加諾,日內瓦,巴塞爾,伯爾尼,Ziirich,阿勞),農村地區(濱寧,沃爾德,Payerne的,朗瑙)和高山地區(達沃斯,蒙大拿州)詳細說明監測點-阿勞:市中心(383 MSL,屋頂25米以上地面),巴塞爾(聖約翰):市中心,地方道路(3米以上的地面,260 MSL); 濱寧(劑量巴塞爾:農村/郊區,山,3 MAG,300m.sl); 達沃斯:外鎮平谷高原(3星等,1580 MSL); 伯爾尼:大學伯爾尼,露台(2 MAG,533 MSL)的; 日內瓦:市中心,住宅/辦公區,區內道路(3米,380 MSL); 盧加諾:市中心,地方道路(3星等,280 MS1); 蒙大拿州(3星等,1350 MS1)遙控器上的森林附近的坡; 沃爾德:村莊,山坡,沒有路(3星等,630 MSL)之外; Ziirich:靠近市中心,地方道路(5星等,460 MSL); 佩耶納:村外,沒有路(2.5星等,460 MSL); 朗瑙:農村,沒有路(2 MAG,700 MSL)PMTØ測量:這是在公共衛生哈佛學校發展:可吸入顆粒物是使用sharpcut,低容量級聯撞擊(微環境監測MEM)確定。該方法已在美國其他研究中使用(瑪普萊等人,1987; Lioy等人,1988)。空氣通過兩階段嵌塞入口,在那裡顆粒 ​​大於10 #m中被收集繪製。更小的顆粒通過衝擊階段,並收集在聚四氟乙烯過濾器(型號蓋爾曼科學PTFE R2PJ041,孔徑2#分,直徑41毫米)。空氣流率為4〜'MIN- 1.採樣週期是一個星期。聚四氟乙烯過濾器被儲存在環境室具有恆定的空氣濕度(50%相對濕度)中,在溫度為20和23℃之間。(:限檢測0.01毫克,精密_ + 5%梅特勒)過濾器之前被曝光稱重。曝光後,將濾膜在乾燥室(矽膠)之前最後稱量乾燥至少24小時,然後儲存在環境室中進行至少24小時。測量了1993年1月4日和1994年1月在巴塞爾的4之間進行,監測時間為1993年Febuary和二月1994年之間分別計算在瑞士高原為950毫巴和283 K的標準大氣PM10濃度TSP測量和氣態測量:不同的技術被用於測量的TSP。我們將提出的TSP數據僅供SAPALDIA站點,其中公知的技術,如“高卷採樣”(DIGITEL,對玻璃纖維過濾器的24個時裝置),β衰減(FAG,連續監視 ​​器)和錐形元件振盪微天平( TEOM)被使用。高容量取樣在40毫安H- 1,其他顯示器用的1-3米3 H- 1的流動的玻璃纖維過濾器的處理是相似的PM10特氟隆過濾器的處理的體積運行。從這些數據中,每日裝置進行了計算。為了比較用PM10級別的數據,每週平均值進行計算。當任何一周三天以上失踪,一周被排除在外。(在1993--“DIGITEL”用於SAPALDIA研究工具:Binnlngen,日內瓦,Ziirich,Payerne的,盧加諾,高卷自身建設:阿勞。 “FAG”:達沃斯,“TEOM”:瓦爾德“Elecos”:蒙大拿州),從這些顯示器的技術領域進行比較研究分析表明,DIGITEL和FAG監測數據的一系列_ + 15%TEOM數據均在相對應。總是比其他顯示器更低。該顯示器實際上是專為可吸入顆粒物測量。它可以與TSP,但外場試驗的入口運行顯示的讀數要低得多。該儀器的讀數是相似的顯示器確定PM10的質量分數。讀數均在30 %以下。比其他的TSP顯示器由於這些觀察是一致的,我們通過乘以重新評估沃爾德的TSP數據與1.4倍TEOM讀數。氣態污染物〜;使用標準技術測得的:SO 2(熒光:“顯示器實驗室”, “堀場製作所”),氮氧化物(化學發 ​​光:“監控實驗室”,“堀場製作所”),O 3(UV吸收:“監控實驗室”)氣象參數空氣溫度,相對濕度,輻射全球,風速從瑞士獲得網絡氣象(瑞士氣象研究所),它使用標準的技術。在沃爾德,空氣溫度和相對濕度分別測定在當地的空氣污染的監視器。統計分析:統制
































正在翻譯中..
結果 (繁體中文) 3:[復制]
復制成功!
顆粒物小於10#M(PM10)和總懸浮顆粒物(TSP)
在都市、農村和
瑞士
通道在高山的空氣,我“O布萊恩利,:~ G. schaeppi,T通道迅達,§
美國ackermann-liebrich,§博士洛伊恩貝格爾¶和SAPALDIA團隊
我“聯邦技術研究所,並應用生理衛生院,clausiusstr。25、ch-8092
ziirich,瑞士;:~ ziircher h6henklink沃爾德,ch-8636 faltigberg,瑞士;§學院社會
和預防醫學,steinengraben CH-4051 49,巴塞爾,瑞士;¶
Vaudois大學中心醫院,rue de Bugnon,ch-1011洛桑、瑞士

摘要
環境濃度的顆粒物小於10μM空氣動力學直徑進行量測在瑞士的1年在1993個都市,鄉村和高山遺址。PM10濃度為10μ通用之間(高山)和33μGM - 3(都市)。被發現在盧加諾的濃度最高,在阿爾卑斯山以南,在瑞士高原都市網站(350-670 MSL)。農村水准比都市低三分之一,相對均勻分佈。高山網站顯示相當低的水准。PM10和TSP之間的比率分別為0.6和0.75之間的比率最高,污染最嚴重的都市遺址中發現的。顆粒物污染的季節變化呈峰值水准在冬季和秋季,主要是在寒冷的溫度反演。
統計分析表明PM10和沒有Z和2之間的良好的相關性,與TSP在都市地區。

1。介紹最近的流行病學研究表明,懸浮顆粒物大大影響呼吸健康。懸浮顆粒物和肺功能參數之間的關聯,呼吸道症狀和死亡率已發現(布勞恩et al.,1992;教宗和Dockery,1992;Dockery et al.,1993)。中,“1991,瑞士的一個研究(SAPALDIA:對成人的空氣污染與肺部疾病的關係的研究)研究了瑞士的慢性肺疾病和長期暴露於空氣污染患病之間。
在流行病學研究中,發現不同的細分數的TSP和呼吸健康的影響(如PM10、PM2.5的)。
正在翻譯中..
 
其它語言
本翻譯工具支援: 世界語, 中文, 丹麥文, 亞塞拜然文, 亞美尼亞文, 伊博文, 俄文, 保加利亞文, 信德文, 偵測語言, 優魯巴文, 克林貢語, 克羅埃西亞文, 冰島文, 加泰羅尼亞文, 加里西亞文, 匈牙利文, 南非柯薩文, 南非祖魯文, 卡納達文, 印尼巽他文, 印尼文, 印度古哈拉地文, 印度文, 吉爾吉斯文, 哈薩克文, 喬治亞文, 土庫曼文, 土耳其文, 塔吉克文, 塞爾維亞文, 夏威夷文, 奇切瓦文, 威爾斯文, 孟加拉文, 宿霧文, 寮文, 尼泊爾文, 巴斯克文, 布爾文, 希伯來文, 希臘文, 帕施圖文, 庫德文, 弗利然文, 德文, 意第緒文, 愛沙尼亞文, 愛爾蘭文, 拉丁文, 拉脫維亞文, 挪威文, 捷克文, 斯洛伐克文, 斯洛維尼亞文, 斯瓦希里文, 旁遮普文, 日文, 歐利亞文 (奧里雅文), 毛利文, 法文, 波士尼亞文, 波斯文, 波蘭文, 泰文, 泰盧固文, 泰米爾文, 海地克里奧文, 烏克蘭文, 烏爾都文, 烏茲別克文, 爪哇文, 瑞典文, 瑟索托文, 白俄羅斯文, 盧安達文, 盧森堡文, 科西嘉文, 立陶宛文, 索馬里文, 紹納文, 維吾爾文, 緬甸文, 繁體中文, 羅馬尼亞文, 義大利文, 芬蘭文, 苗文, 英文, 荷蘭文, 菲律賓文, 葡萄牙文, 蒙古文, 薩摩亞文, 蘇格蘭的蓋爾文, 西班牙文, 豪沙文, 越南文, 錫蘭文, 阿姆哈拉文, 阿拉伯文, 阿爾巴尼亞文, 韃靼文, 韓文, 馬來文, 馬其頓文, 馬拉加斯文, 馬拉地文, 馬拉雅拉姆文, 馬耳他文, 高棉文, 等語言的翻譯.

Copyright ©2024 I Love Translation. All reserved.

E-mail: