In the discussion above, it has been tacitly assumed that cells act as的繁體中文翻譯

In the discussion above, it has bee

In the discussion above, it has been tacitly assumed that cells act as passive systems insensitive to external mechanical stimuli. Indeed, it is well known that the maturation of FXs into more stable focal adhesions (FAs) is regulated by mechanical intracytoskeletal stresses arising at the original adhesion spot, which are believed to trigger the recruitment of additional ligand molecules [32,33]. Cell adhesion on nano posts has been associated with localized membrane stretching and wrapping around the geometrical features, in a process similar to endocytosis [34], which is associated with local mechanical stresses and cytoskeletal reorganization. This could be responsible for the recruitment of new molecules at the adhesion site (peaks on the substrate), which would eventually increase locally gadh and therefore facilitate adhesion. Cell staining with clathrin, a marker associated with endocytic vesicles, was demonstrated to reproduce the substrate nanotopography. Fig. 6 shows clusters of clathrin molecules (green spots) smaller and more uniformly distributed over the whole cell membrane for the unetched wafer (uniformly distributed small peaks) compared to substrates with higher roughness (large individual peaks).Finally, a few studies have also tried to address the role played by protein adsorption and conformation on cell adhesion. The surface energy of the rough substrates was demonstrated to benearly constant (w 0.144 J/m2) before cell culturing. However, even if the silicon substrates were not functionalized, proteins such as fibronectin, vitronectin and fibrinogen would tend to deposit on the silicon substrate from the cell culture medium supporting the formation of specific molecular bonds [29]. In this context, a few authors have observed an increased adsorption and a better orientation of the proteins on rougher or nanostructured substrates[28e31]. The larger adsorbed amount as well as the proper orientation and conformation of the proteins would lead to an increase in gadh, thus favoring adhesion on rougher and nanostructuredsubstrates as compared to nominally flat surfaces.Preferential stable adhesion and proliferation of cells on moderately rough surfaces has been observed also in the case of non silicon substrates and for cell lines different from thoseconsidered in this analysis. On nanotextured substrates, made up of demixed poly(L-lactic acid) and polystyrene, human fetal osteoblastic cells have shown optimal adhesion and spreading for Raranging between 5 and 15 nm [35]. With a similar technique but using different polymers (polybromostyrene and polystyrene), fibroblasts have been documented to grow and adhere more avidly on the same small range of Ra [21]. For bacteria, as the staphylococcus epidermidis growing on PMMA, the optimal surface roughness Ra was found to range from 40 to 100 nm [36]. For silicon etched substrates, again, neurons have been shown to adhere more strongly for Ra w25 nm [9]. Macrophages have been traditionally considered as rugophobic cells adhering more easily on planar rather than rough surfaces [37]. However, recent studies seem to support again the notion that moderate roughness (from a few nanometers to a few tens of nanometers) could help macrophages to adhere even on cytotoxic surfaces made by zinc oxides [38].
0/5000
原始語言: -
目標語言: -
結果 (繁體中文) 1: [復制]
復制成功!
在上述討論中,已經默認假定細胞作為被動系統不受外部機械刺激。事實上,眾所周知,FXS到更穩定的粘著斑(FAS)的成熟是通過在原始粘接點所產生的機械應力intracytoskeletal,其被認為觸發額外的配體分子[32,33]的募集調節。納米訊息細胞粘附已經局部膜拉伸和纏繞在幾何特徵,以類似於內吞作用[34]的方法,其與局部機械應力和細胞骨架重組關聯。這可能是負責新分子在粘合部位(基材上峰),最終將本地gadh增加,因此更容易粘附招聘。與網格蛋白,與吞囊泡相關的標誌物,細胞染色被證明重現基板納米形貌。圖網格蛋白分子(綠點)更小,在整個細胞膜對於未蝕刻晶片更均勻地分佈的圖6示出群相比具有更高的粗糙度(大各個峰)底物(均勻分佈的小峰)。<br>最後,一些研究也試圖解決由蛋白質吸附和構象對細胞粘附發揮的作用。粗基質的表面能量被證明benearly常數(瓦特0.144焦耳/平方米)之前細胞培養。然而,即使在矽襯底沒有官能化,蛋白如纖連蛋白,玻連蛋白和纖維蛋白原會傾向於從細胞培養基支持的特定分子鍵[29]形成在矽襯底上沉積。在這方面,一些作者已觀察到增加的吸附和蛋白對粗糙或納米結構的襯底更好的取向<br>[28e31]。蛋白質的較大的吸附量以及適當的取向和構象將導致增加gadh,從而有利於在粗糙和納米結構粘附<br>相比於標稱平坦表面的基底。<br>優惠穩定的粘附性和適度上粗糙的表面細胞的增殖已還觀察到非矽襯底的情況下和用於從這些不同的細胞系<br>在此分析考慮。上納米紋理基材,製成demixed聚(L-乳酸)和聚苯乙烯組成,人胎成骨細胞已顯示最佳的粘附性和Ra的擴頻<br>測距5至15納米之間[35]。用類似的技術,但使用不同的聚合物(聚溴和聚苯乙烯),成纖維細胞已被記錄,以生長和更貪婪地附著在相同的小範圍Ra為[21]。對於細菌,作為表皮葡萄球菌上PMMA生長,粗糙度Ra最佳表面被發現為40至100納米[36]。對於矽蝕刻襯底,再次,神經元已顯示的R a W25納米[9]更牢固地附著。巨噬細胞傳統上被認為是附著更容易在平面rugophobic細胞而不是粗糙的表面[37]。然而,最近的研究似乎又支持這一概念,適度粗糙度(從幾納米到幾十納米的)可以幫助巨噬細胞堅持,甚至由氧化鋅[38]提出細胞表面。
正在翻譯中..
結果 (繁體中文) 2:[復制]
復制成功!
Even living such a rich life he still does not forget his grandmother, hoping that one day from the palace out and find her, so that she can live a good life together<br>When the king learned of the events, the man who had been killed raised the prince, who was sitting on the ground begging,<br>And embrace the king forward.
正在翻譯中..
結果 (繁體中文) 3:[復制]
復制成功!
在上面的討論中,我們默認細胞是對外界機械刺激不敏感的被動系統。事實上,眾所周知,FXs成熟為更穩定的局灶性粘附(FAs)是由在最初粘附點處產生的細胞骨架內機械應力調節的,這種應力被認為觸發了額外配體分子的募集[32,33]。納米柱上的細胞粘附與局部膜拉伸和圍繞幾何特徵的包裹有關,其過程類似於內吞[34],這與局部機械應力和細胞骨架重組有關。這可能是在粘附位點(底物上的峰)招募新分子的原因,最終會新增局部gadh,從而促進粘附。用氯氰菊酯(一種與胞內小泡相關的標記物)對細胞進行染色,證明可以重現基質納米形貌。圖6示出了與粗糙度較高的基底(單個大峰)相比,未匹配晶片的氯氰菊酯分子簇(綠點)更小且更均勻地分佈在整個細胞膜上(均勻分佈的小峰)。<br>最後,一些研究也試圖探討蛋白質吸附和構象對細胞粘附的作用。在細胞培養前,粗糙基質的表面能顯示為有益常數(w 0.144j/m2)。然而,即使矽基質沒有功能化,諸如纖維連接蛋白、卵黃蛋白和纖維蛋白原等蛋白質也會傾向於從支持形成特定分子鍵的細胞培養基沉積在矽基質上[29]。在這方面,一些作者觀察到蛋白質在粗糙或納米結構的基底上的吸附增强和更好的取向<br>[28e31]。吸附量越大,蛋白質的取向和構象越合適,gadh含量越高,有利於在粗糙和納米結構上的粘附<br>與名義上平坦的表面相比的基底。<br>在非矽基底和不同於非矽基底的細胞系中,也觀察到細胞在中等粗糙表面上的優先穩定粘附和增殖<br>在本分析中考慮。在由聚乳酸和聚苯乙烯組成的納米基底上,人胎成骨細胞顯示出對Ra的最佳粘附和擴散<br>在5到15納米之間[35]。通過類似的科技,但使用不同的聚合物(聚溴苯乙烯和聚苯乙烯),成纖維細胞已經被證明在相同的小範圍Ra上生長和粘附更為强烈[21]。對於細菌,當表皮葡萄球菌生長在PMMA上時,最佳的表面粗糙度Ra為40-100nm[36]。同樣,對於矽蝕刻的基底,神經元在Ra-w25 nm處的粘附性更强[9]。巨噬細胞傳統上被認為是更容易粘附在平面而不是粗糙表面上的具皺紋的細胞[37]。然而,最近的研究似乎再次支持這樣的觀點,即中等粗糙度(從幾納米到幾十納米)甚至可以幫助巨噬細胞粘附在氧化鋅製成的細胞毒性表面上[38]。<br>
正在翻譯中..
 
其它語言
本翻譯工具支援: 世界語, 中文, 丹麥文, 亞塞拜然文, 亞美尼亞文, 伊博文, 俄文, 保加利亞文, 信德文, 偵測語言, 優魯巴文, 克林貢語, 克羅埃西亞文, 冰島文, 加泰羅尼亞文, 加里西亞文, 匈牙利文, 南非柯薩文, 南非祖魯文, 卡納達文, 印尼巽他文, 印尼文, 印度古哈拉地文, 印度文, 吉爾吉斯文, 哈薩克文, 喬治亞文, 土庫曼文, 土耳其文, 塔吉克文, 塞爾維亞文, 夏威夷文, 奇切瓦文, 威爾斯文, 孟加拉文, 宿霧文, 寮文, 尼泊爾文, 巴斯克文, 布爾文, 希伯來文, 希臘文, 帕施圖文, 庫德文, 弗利然文, 德文, 意第緒文, 愛沙尼亞文, 愛爾蘭文, 拉丁文, 拉脫維亞文, 挪威文, 捷克文, 斯洛伐克文, 斯洛維尼亞文, 斯瓦希里文, 旁遮普文, 日文, 歐利亞文 (奧里雅文), 毛利文, 法文, 波士尼亞文, 波斯文, 波蘭文, 泰文, 泰盧固文, 泰米爾文, 海地克里奧文, 烏克蘭文, 烏爾都文, 烏茲別克文, 爪哇文, 瑞典文, 瑟索托文, 白俄羅斯文, 盧安達文, 盧森堡文, 科西嘉文, 立陶宛文, 索馬里文, 紹納文, 維吾爾文, 緬甸文, 繁體中文, 羅馬尼亞文, 義大利文, 芬蘭文, 苗文, 英文, 荷蘭文, 菲律賓文, 葡萄牙文, 蒙古文, 薩摩亞文, 蘇格蘭的蓋爾文, 西班牙文, 豪沙文, 越南文, 錫蘭文, 阿姆哈拉文, 阿拉伯文, 阿爾巴尼亞文, 韃靼文, 韓文, 馬來文, 馬其頓文, 馬拉加斯文, 馬拉地文, 馬拉雅拉姆文, 馬耳他文, 高棉文, 等語言的翻譯.

Copyright ©2025 I Love Translation. All reserved.

E-mail: