Pseudo-static/dynamic methods for walls, which involve an assumeddistr的繁體中文翻譯

Pseudo-static/dynamic methods for w

Pseudo-static/dynamic methods for walls, which involve an assumed
distribution of internal earth pressure (e.g. Fig. 14.12), require that
each reinforcement layer carry a portion of the integrated earth pressure
over a tributary area, Sv, as illustrated in Fig. 14.15. The magnitude of
tensile force must not exceed the allowable design load in the reinforce-
ment based on tensile over-stressing, facing connection strength and pull-
out capacity of the layer. In North American practice, factors of safety
against these modes of failure are reduced to values that are typically
75% of static values. Figure 14.15 also demonstrates that the inertial
force due to the tributary portion of the facing column should be
added to the reinforcement forces under seismic loading in the case of
segmental walls. An important implication of the assumed earth pressure
distribution using the pseudo-staticM±Omethod described earlier, is that
the relative proportion of load to be carried by the reinforcement layers
closest to the crest of a wall with uniform reinforcement spacing increases
with increasing horizontal acceleration. This may require a greater
number of layers towards the top of the wall than is required for static
load environments. A similar conclusion was reached by Vrymoed
(1989) using a tributary area approach that assumes that the inertial
force carried by each reinforcement layer increases linearly with height
above the toe of the wall for equally spaced reinforcement layers. Bona-
parte et al. (1986) applied the tributary area method to walls and slopes
but recommended a uniform distribution for the dynamic earth pressure
increment (i.e. Hd ˆ 0:5H in Fig. 14.12).
0/5000
原始語言: -
目標語言: -
結果 (繁體中文) 1: [復制]
復制成功!
Pseudo-static/dynamic methods for walls, which involve an assumeddistribution of internal earth pressure (e.g. Fig. 14.12), require thateach reinforcement layer carry a portion of the integrated earth pressureover a tributary area, Sv, as illustrated in Fig. 14.15. The magnitude oftensile force must not exceed the allowable design load in the reinforce-ment based on tensile over-stressing, facing connection strength and pull-out capacity of the layer. In North American practice, factors of safetyagainst these modes of failure are reduced to values that are typically75% of static values. Figure 14.15 also demonstrates that the inertialforce due to the tributary portion of the facing column should beadded to the reinforcement forces under seismic loading in the case ofsegmental walls. An important implication of the assumed earth pressuredistribution using the pseudo-staticM±Omethod described earlier, is thatthe relative proportion of load to be carried by the reinforcement layersclosest to the crest of a wall with uniform reinforcement spacing increaseswith increasing horizontal acceleration. This may require a greaternumber of layers towards the top of the wall than is required for staticload environments. A similar conclusion was reached by Vrymoed(1989) using a tributary area approach that assumes that the inertialforce carried by each reinforcement layer increases linearly with heightabove the toe of the wall for equally spaced reinforcement layers. Bona-parte et al. (1986) applied the tributary area method to walls and slopesbut recommended a uniform distribution for the dynamic earth pressureincrement (i.e. Hd ˆ 0:5H in Fig. 14.12).
正在翻譯中..
結果 (繁體中文) 2:[復制]
復制成功!
偽靜態/動態方法的牆壁,這涉及一個假定
內部土壓力(例如圖14.12)的分佈,要求
每個加強層承載集成土壓力的一部分
在一個支流區域,SV,如圖11所示。14.15。的幅度
拉力不得超過在reinforce-允許的設計荷載
基於拉伸過度強調包換,面向連接強度和上拉
出來層的能力。在北美實踐中,安全係數
防止失效的這些模式都降低到通常的值
靜態值的75%。圖14.15也表明慣性
由於面對柱的支流部力應
地震荷載下在的情況下,加入到加固力
節段性牆壁。假設土壓力的一個重要含義
使用偽staticM±Omethod如前所述分佈,是
負載的相對比例由加強層來進行
最接近均勻筋間距增大的壁的頂峰
的增加水平加速度。這可能需要一個更大的
比所需靜態層數朝向壁的頂部
負荷環境。類似的結論是由Vrymoed達到
(1989),使用假定一個支流面積的做法,即慣性
由每個加強層線性增加隨高度進行力
牆的趾以上等間隔加強層。Bona-
單方面等。(1986)採用的支流面積法牆壁和斜坡
,但建議為動態土壓力的均勻分佈
的增量(即高清?? 0:5H圖14.12)。
正在翻譯中..
結果 (繁體中文) 3:[復制]
復制成功!
的偽靜態/動態方法的牆壁,其中涉及一個假設內部土壓力的分佈(如圖14.12所示),要求每個加固層都攜帶一部分集成土壓力在支流地區,SV,如圖14.15所示。的大小拉力不得超過鋼筋的允許設計荷載—基於拉伸過度強調,面對連接强度和拉力—出層能力。在北美的實踐中,安全因素對這些故障模式降低到通常的值靜態值的75%。圖14.15還表明,慣性由於所要列的支路部分的受力新增了在地震荷載作用下的加固的情况下段牆。假定土壓力的一個重要含義利用偽staticm±氧樂果之前描述的分佈,是由加固層承載的荷載的相對比例最接近牆頂的均勻配筋間距新增隨著水准加速度。這可能需要一個更大的朝向牆頂部的層的數量比所需的靜態負載環境。類似的結論是由vrymoed(1989)採用假設慣性的支路面積法由各加固層所攜帶的力隨高度線性新增上面的脚趾的牆壁等間距的加固層。Bona—單方面等人。(1986)將支路面積法應用於牆壁和斜坡但建議一個均勻分佈的動態土壓力增量(即高清ˆ0:5h圖14.12)。
正在翻譯中..
 
其它語言
本翻譯工具支援: 世界語, 中文, 丹麥文, 亞塞拜然文, 亞美尼亞文, 伊博文, 俄文, 保加利亞文, 信德文, 偵測語言, 優魯巴文, 克林貢語, 克羅埃西亞文, 冰島文, 加泰羅尼亞文, 加里西亞文, 匈牙利文, 南非柯薩文, 南非祖魯文, 卡納達文, 印尼巽他文, 印尼文, 印度古哈拉地文, 印度文, 吉爾吉斯文, 哈薩克文, 喬治亞文, 土庫曼文, 土耳其文, 塔吉克文, 塞爾維亞文, 夏威夷文, 奇切瓦文, 威爾斯文, 孟加拉文, 宿霧文, 寮文, 尼泊爾文, 巴斯克文, 布爾文, 希伯來文, 希臘文, 帕施圖文, 庫德文, 弗利然文, 德文, 意第緒文, 愛沙尼亞文, 愛爾蘭文, 拉丁文, 拉脫維亞文, 挪威文, 捷克文, 斯洛伐克文, 斯洛維尼亞文, 斯瓦希里文, 旁遮普文, 日文, 歐利亞文 (奧里雅文), 毛利文, 法文, 波士尼亞文, 波斯文, 波蘭文, 泰文, 泰盧固文, 泰米爾文, 海地克里奧文, 烏克蘭文, 烏爾都文, 烏茲別克文, 爪哇文, 瑞典文, 瑟索托文, 白俄羅斯文, 盧安達文, 盧森堡文, 科西嘉文, 立陶宛文, 索馬里文, 紹納文, 維吾爾文, 緬甸文, 繁體中文, 羅馬尼亞文, 義大利文, 芬蘭文, 苗文, 英文, 荷蘭文, 菲律賓文, 葡萄牙文, 蒙古文, 薩摩亞文, 蘇格蘭的蓋爾文, 西班牙文, 豪沙文, 越南文, 錫蘭文, 阿姆哈拉文, 阿拉伯文, 阿爾巴尼亞文, 韃靼文, 韓文, 馬來文, 馬其頓文, 馬拉加斯文, 馬拉地文, 馬拉雅拉姆文, 馬耳他文, 高棉文, 等語言的翻譯.

Copyright ©2024 I Love Translation. All reserved.

E-mail: