The failure of Hartree-Fock models to properly account for the energetics of reactions involving bond making and bond breaking,and probably as well for the geometries of transition-metal compounds, can be traced to incomplete description of the coupling f motions of electrons(electron correlation"). A number of correlated models, among the most popular, the MP2 modelso, have been developed. These generally provide descriptions of equilibrium and transition-state and conformations, as well as reaction thermodynamics and kinetics. including reactions where bonds are broken and formed. Correlated calculations such as MP2 are, however, much more costly than alculations, and are usually not practical for molecules with more than 20 atoms.
An alternative approach to the problem of electron correlation is found in so-called density functional models". Instead of approximating the true many-electron solution by a composite of one-electron solutions, density functional models account explicitely for many- electron effects by"building in" a correlation term based on an idealized" many-electron problem. Because many-electron effects are taken into account explicitly, the results of a density functional calculation should be superior to those from a Hartree-Fock treatment, and comparable to those from a"conventional" correlated calculation, such as an MP2 calculation. Even so, the computational costinvolved in actually doing a density functional calculation actually increases more slowly with increasing molecular size than the cost of aHartree- Fock or MP2 calculation. There are significant drawbacks with density functional models. Improvement of Hartree-Fock and correlated models such as MP2 follows in a straightforward manner by"easing" the approximations originally made to solve the correctmany electron problem. However, the only way that density functional models may be improved to bring the"idealized" many-electron problem, on which the correlation term is based, closer to the"real" problem. Unfortunately, it is not yet obvious how to do this. Additionally density functional models are not presently amenable to fully analytical treatments(as are Hartree-Fock and MP2 models). Required numerical integration steps introduce uncertainties into the calculations, and these need to be carefully monitored and controlled.
This brief guide focuses on the application of molecular mechanics semi-empirical and Hartree-Fock molecular orbital models,