MicroRNAs (miRNAs) are a family of endogenous small non￾coding RNAs in的中文翻譯

MicroRNAs (miRNAs) are a family of

MicroRNAs (miRNAs) are a family of endogenous small non￾coding RNAs involved in various developmental and physiological
processes by negatively regulating gene expression [Bartel 2004;
Zhang et al., 2007]. To date, thousands of miRNAs in human and
other species have been identified in miRBase database [Kozomara
and Griffiths-Jones, 2011]. miRNA genes may reside in introns of
protein coding genes or intergenic regions. They are initially tran￾scribed in the nucleus as long primary transcripts (pri-miRNAs)
and further processed by the RNase Drosha to hairpin precursor
miRNAs (pre-miRNAs) [Lee et al., 2003]. Then, the pre-miRNA
hairpins are exported to the cytoplasm and processed into ∼22 nt
miRNA duplex by RNase Dicer [Bartel, 2004]. One strand from
the miRNA duplex (miR-5p/miR-3p duplex) containing the less
stable 5 end is preferentially selected and loaded onto the RNA￾induced silencing complex (RISC) to produce a functional, mature
miRNA (MIR) [Khvorova et al., 2003]. MIRs recognize their tar￾get mRNAs mainly by base-pairing interaction between nucleotides
2 and 8 (seed region) from its 5 end and the complementary nu￾cleotides on the 3 untranslated region (3
UTR) of target mRNAs
[Lai, 2002; Lewis et al., 2003]. Currently, it is estimated that an
miRNA may regulate hundreds of target genes and most of human
protein coding genes are regulated by miRNAs [Betel et al., 2008;
Friedman et al., 2009; Krek et al., 2005].
Single nucleotide polymorphisms (SNPs) are important varia￾tions for the diversity among individuals, as well as leading to phe￾notypes, traits, and diseases [Shastry, 2009]. Since miRNAs are wide
and key regulators of gene expression, miRNA-related SNPs includ￾ing SNPs in miRNA genes and target sites may function as regulatory
SNPs through modifying miRNA regulation to affect the pheno￾types and disease susceptibility [Ryan et al., 2010]. Moreover, SNPs
located in MIRs are likely to cause complex influence by affecting
MIR maturation, functional strand selection, and target selection.
To date, a number of studies have demonstrated that SNPs in target
sites or miRNA genes are associated with diseases [Jazdzewski et al.,
2008; Mencia et al., 2009; Ryan et al., 2010; Saunders et al., 2007;
Sethupathy and Collins, 2008; Sun et al., 2009]. For example, an SNP
0/5000
原始語言: -
目標語言: -
結果 (中文) 1: [復制]
復制成功!
MicroRNAs (miRNAs) are a family of endogenous small non￾coding RNAs involved in various developmental and physiologicalprocesses by negatively regulating gene expression [Bartel 2004;Zhang et al., 2007]. To date, thousands of miRNAs in human andother species have been identified in miRBase database [Kozomaraand Griffiths-Jones, 2011]. miRNA genes may reside in introns ofprotein coding genes or intergenic regions. They are initially tran￾scribed in the nucleus as long primary transcripts (pri-miRNAs)and further processed by the RNase Drosha to hairpin precursormiRNAs (pre-miRNAs) [Lee et al., 2003]. Then, the pre-miRNAhairpins are exported to the cytoplasm and processed into ∼22 ntmiRNA duplex by RNase Dicer [Bartel, 2004]. One strand fromthe miRNA duplex (miR-5p/miR-3p duplex) containing the lessstable 5 end is preferentially selected and loaded onto the RNA￾induced silencing complex (RISC) to produce a functional, maturemiRNA (MIR) [Khvorova et al., 2003]. MIRs recognize their tar￾get mRNAs mainly by base-pairing interaction between nucleotides2 and 8 (seed region) from its 5 end and the complementary nu￾cleotides on the 3 untranslated region (3UTR) of target mRNAs[Lai, 2002; Lewis et al., 2003]. Currently, it is estimated that anmiRNA may regulate hundreds of target genes and most of humanprotein coding genes are regulated by miRNAs [Betel et al., 2008;Friedman et al., 2009; Krek et al., 2005].Single nucleotide polymorphisms (SNPs) are important varia￾tions for the diversity among individuals, as well as leading to phe￾notypes, traits, and diseases [Shastry, 2009]. Since miRNAs are wideand key regulators of gene expression, miRNA-related SNPs includ￾ing SNPs in miRNA genes and target sites may function as regulatorySNPs through modifying miRNA regulation to affect the pheno￾types and disease susceptibility [Ryan et al., 2010]. Moreover, SNPslocated in MIRs are likely to cause complex influence by affectingMIR maturation, functional strand selection, and target selection.To date, a number of studies have demonstrated that SNPs in targetsites or miRNA genes are associated with diseases [Jazdzewski et al.,2008; Mencia et al., 2009; Ryan et al., 2010; Saunders et al., 2007;Sethupathy and Collins, 2008; Sun et al., 2009]. For example, an SNP
正在翻譯中..
結果 (中文) 2:[復制]
復制成功!
微RNA(miRNA)是参与各种发育和生理内源性小非???编码RNA家族
通过基因表达[2004巴特尔负调节过程;
Zhang等人,2007]。迄今为止,在人体和数以千计的miRNA的
其它物种已经在miRBase数据库数据库[Kozomara鉴定
和格里菲思-琼斯,2011]。miRNA基因可驻留在的内含子
蛋白编码基因或基因间区域。他们最初移植???刻划在细胞核只要初级转录(PRI-微RNA)
和由RNA酶Drosha酶进一步处理以发夹前体
微RNA(的pre-miRNA)[Lee等,2003]。然后,将前miRNA
发夹出口到细胞质和加工成~22核苷酸
由RNA酶Dicer酶[巴特尔,2004]的miRNA双链体。从一条链
包含较少的miRNA双链(MIR-5P /的miR-3P双工)
稳定的5?端被优先选择并装载到诱导的沉默复合体(RISC)将RNA ???产生功能,成熟
的miRNA(MIR)[Khvorova等人,2003]。大鹏认识到自己的焦油?得到的mRNA主要由核苷酸之间的碱基配对的相互作用
从5 2和8(种子区)?结束,并在3互补NU ???核甘酸?非翻译区(3'
UTR)靶mRNA
[荔,2002; 刘易斯等人,2003]。目前,据估计,一个
miRNA的可调节数百靶基因的和大多数人类的
蛋白质编码基因被微RNA [槟榔等,2008调节。;
Friedman等人,2009; Krek等,2005]。
单核苷酸多态性(SNP)是重要的杂物???系统蒸发散为个体之间的差异,以及导致PHE ??? notypes,性状和疾病[Shastry,2009]。由于miRNA是广泛的
基因表达和重点监管,miRNA的相关的SNPs大型的源码???在miRNA基因和靶位点的SNPs ING可以作为监管
通过修改miRNA调控影响苯氧???类型和疾病易感性[Ryan等SNP位点人,2010]。此外,SNP位点
位于大鹏有可能通过影响造成复杂影响
MIR成熟,功能链选择和目标选择。
到目前为止,许多研究已经证明,单核苷酸多态性中目标
站点或miRNA基因与疾病[Jazdzewski关联等人,
2008; 门西亚等,2009; Ryan等,2010; Saunders等人,2007;
Sethupathy和Collins,2008; Sun等人,2009]。例如,一个单核苷酸多态性
正在翻譯中..
結果 (中文) 3:[復制]
復制成功!
MicroRNAs(miRNAs)是一类内源性非编码RNA小￾参与多种发育和生理通过负调控基因的表达[ Bartel 2004过程;张等,2007。到目前为止,miRNA在人类数千其他物种已在miRBase数据库[ kozomara鉴定和Griffiths Jones,2011 ]。miRNA基因可能位于内含子蛋白质编码基因和基因间区。他们最初Tran￾介绍核长初级转录产物(pri-miRNA)并由RNase Drosha进一步加工发夹前体microRNA(miRNA前)[ 2003 ],李等人。然后,miRNA前体发夹出口到细胞质和加工成∼22台币miRNA的双面核糖核酸酶Dicer [ 2004 ] Bartel。从一条miRNA的双工(mir-5p / mir-3p双工)含有少稳定的5端是优先选择和加载到￾RNA诱导沉默复合体(RISC)产生的一种功能,成熟微小RNA(miR)[ khvorova et al.,2003 ]。大鹏承认他们的焦油￾得到mRNA的碱基配对相互作用主要由核苷酸2和8(区域)的5端和互补的女￾mRNA的3端非翻译区(3UTR)的靶基因[赖,2002;Lewis等人,2003 ]。目前,据估计,一miRNA可调控靶基因上大多数的人类蛋白编码基因的miRNA通过调节[槟榔等,2008;弗里德曼et al.,2009;克列et al.,2005 ]。单核苷酸多态性(SNPs)是重要的变￾和个体之间的差异,以及导致苯丙氨酸￾表型性状,与疾病,[ 2009 ] Shastry。由于miRNA是广泛的和基因表达的关键调节器,包括￾miRNA相关的单核苷酸多态性SNPs在荷兰miRNA基因和靶位点可以作为监管单核苷酸多态性通过改变miRNA调控影响的现象￾类型和疾病易感性[ Ryan et al.,2010 ]。此外,SNPs位于MIRs可能通过影响造成复杂的影响我成熟、功能链的选择和目标选择。至目前为止,一些研究已经证明,在目标的单核苷酸多态性网站或miRNA基因与疾病[ jazdzewski等相关。,2008;曼西亚et al.,2009;Ryan et al.,2010;桑德斯et al.,2007;sethupathy和Collins,2008;Sun et al.,2009 ]。例如,一个SNP
正在翻譯中..
 
其它語言
本翻譯工具支援: 世界語, 中文, 丹麥文, 亞塞拜然文, 亞美尼亞文, 伊博文, 俄文, 保加利亞文, 信德文, 偵測語言, 優魯巴文, 克林貢語, 克羅埃西亞文, 冰島文, 加泰羅尼亞文, 加里西亞文, 匈牙利文, 南非柯薩文, 南非祖魯文, 卡納達文, 印尼巽他文, 印尼文, 印度古哈拉地文, 印度文, 吉爾吉斯文, 哈薩克文, 喬治亞文, 土庫曼文, 土耳其文, 塔吉克文, 塞爾維亞文, 夏威夷文, 奇切瓦文, 威爾斯文, 孟加拉文, 宿霧文, 寮文, 尼泊爾文, 巴斯克文, 布爾文, 希伯來文, 希臘文, 帕施圖文, 庫德文, 弗利然文, 德文, 意第緒文, 愛沙尼亞文, 愛爾蘭文, 拉丁文, 拉脫維亞文, 挪威文, 捷克文, 斯洛伐克文, 斯洛維尼亞文, 斯瓦希里文, 旁遮普文, 日文, 歐利亞文 (奧里雅文), 毛利文, 法文, 波士尼亞文, 波斯文, 波蘭文, 泰文, 泰盧固文, 泰米爾文, 海地克里奧文, 烏克蘭文, 烏爾都文, 烏茲別克文, 爪哇文, 瑞典文, 瑟索托文, 白俄羅斯文, 盧安達文, 盧森堡文, 科西嘉文, 立陶宛文, 索馬里文, 紹納文, 維吾爾文, 緬甸文, 繁體中文, 羅馬尼亞文, 義大利文, 芬蘭文, 苗文, 英文, 荷蘭文, 菲律賓文, 葡萄牙文, 蒙古文, 薩摩亞文, 蘇格蘭的蓋爾文, 西班牙文, 豪沙文, 越南文, 錫蘭文, 阿姆哈拉文, 阿拉伯文, 阿爾巴尼亞文, 韃靼文, 韓文, 馬來文, 馬其頓文, 馬拉加斯文, 馬拉地文, 馬拉雅拉姆文, 馬耳他文, 高棉文, 等語言的翻譯.

Copyright ©2025 I Love Translation. All reserved.

E-mail: