Retaining structures are susceptible to failure during strong earthqua的繁體中文翻譯

Retaining structures are susceptibl

Retaining structures are susceptible to failure during strong earthquakes
and are damaged frequently. Such failures are documented in
almost all post-earthquake damage reports, e.g., the 1960 Chilean earthquake
damage reported on by Duke and Leeds (2), the 1964 Alaska
earthquake reported on by Ross, et al. (13), and the 1971 San Fernando
earthquake reported on by Clough and Fragaszy (1).
Many earthquake-damage surveys contain accounts of movement or
failure of bridge abutments due to the seismic lateral pressures. The wall
movement causes distortion or even collapse of the bridge superstructure.
Although this form of failure is not as dramatic as other types of
earthquake damage, the seismic behavior of earth retaining structures is
an important design problem in seismic regions.
Gravity retaining walls that support dry cohesionless backfills form a
major group of the earth retaining structures. These walls are damaged
during strong earthquakes because of seismically induced lateral earth
pressures and inertial effects on the wall itself. The present paper is concerned
mainly with the seismic behavior and design of these walls.
Two design methods are currently available for the seismic design of
gravity retaining walls. The first method, which has been the common
practice for many years, is based on design rules suggested in a paper
by Seed and Whitman (15). In their paper use is made of the MononobeOkabe
analysis which is an extension of the Coulomb sliding wedge theory
in which horizontal and vertical inertia terms take into account the
earthquake loading. In this method the design is controlled by a strength
criterion.
An alternative design method, which is based on the earthquake-induced
displacement of the wall was proposed by Richards and Elms (12)
in late 1970's. Richards and Elms suggest that an acceleration less than
the expected peak ground acceleration be used in design. This means

0/5000
原始語言: -
目標語言: -
結果 (繁體中文) 1: [復制]
復制成功!
Retaining structures are susceptible to failure during strong earthquakesand are damaged frequently. Such failures are documented inalmost all post-earthquake damage reports, e.g., the 1960 Chilean earthquakedamage reported on by Duke and Leeds (2), the 1964 Alaskaearthquake reported on by Ross, et al. (13), and the 1971 San Fernandoearthquake reported on by Clough and Fragaszy (1).Many earthquake-damage surveys contain accounts of movement orfailure of bridge abutments due to the seismic lateral pressures. The wallmovement causes distortion or even collapse of the bridge superstructure.Although this form of failure is not as dramatic as other types ofearthquake damage, the seismic behavior of earth retaining structures isan important design problem in seismic regions.Gravity retaining walls that support dry cohesionless backfills form amajor group of the earth retaining structures. These walls are damagedduring strong earthquakes because of seismically induced lateral earthpressures and inertial effects on the wall itself. The present paper is concernedmainly with the seismic behavior and design of these walls.Two design methods are currently available for the seismic design ofgravity retaining walls. The first method, which has been the commonpractice for many years, is based on design rules suggested in a paperby Seed and Whitman (15). In their paper use is made of the MononobeOkabeanalysis which is an extension of the Coulomb sliding wedge theory
in which horizontal and vertical inertia terms take into account the
earthquake loading. In this method the design is controlled by a strength
criterion.
An alternative design method, which is based on the earthquake-induced
displacement of the wall was proposed by Richards and Elms (12)
in late 1970's. Richards and Elms suggest that an acceleration less than
the expected peak ground acceleration be used in design. This means

正在翻譯中..
結果 (繁體中文) 2:[復制]
復制成功!
支擋結構中強地震很容易受到破壞
,並且經常損壞。此類故障記錄在
幾乎所有的震後損失報告,例如,1960年智利地震
由杜克大學和利茲報導傷害(2),1964年的阿拉斯加
地震羅斯等人報告。(13),和1971年聖費爾南多
地震由克拉夫和Fragaszy報導(1)。
許多地震損害調查包含運動或賬戶
橋墩的失敗是由於地震的橫向壓力。壁
運動引起的失真,甚至橋樑上部結構的崩潰。
雖然這種形式的失敗並不像其他類型的戲劇性
地震破壞,擋土結構的抗震性能是
一個重要的設計問題,在地震地區。
重力式擋土牆支持幹黏性回填形成
的擋土結構的主要群體。這些牆被破壞
時,因為地震引起的側向土的強烈地震
壓力,上牆本身的慣性作用。本論文涉及
主要與這些牆的抗震性能和設計。
兩種設計方法是目前可用於抗震設計
重力式擋土牆。第一種方法,這一直是共同的
多年實踐,是基於在一份文件中提出的設計規則
由種子和惠特曼(15)。在他們的論文利用了該MononobeOkabe的
分析,該分析是庫侖滑動楔理論的延伸
,其中水平和垂直的慣性方面考慮
地震載荷。在該方法中,設計由強度控制
標準。
另一種設計方法,它是基於地震引起
的壁的位移,提出由Richards和榆樹(12)
在70年代末。Richards和榆樹建議的加速度小於
預期的峰值地面加速度在設計中使用。意即

正在翻譯中..
結果 (繁體中文) 3:[復制]
復制成功!
保持結構在强震中容易受到破壞經常損壞。這樣的故障記錄在幾乎所有的地震破壞報告,例如,1960智利地震報損的公爵和里茲(2),阿拉斯加1964羅斯,等地震報告。(13)和1971個聖費爾南多地震報導的克拉夫和fragaszy(1)。許多地震損壞的調查包含的帳戶的運動或橋墩由於地震側向壓力故障。牆橋樑上部結構運動引起的變形甚至倒塌。雖然這種形式的失敗並不像其他類型的那樣戲劇化地震破壞,土支護結構的抗震性能地震地區的一個重要設計問題。重力式擋土牆,支幹粘性土回填形成擋土結構的主要組。這些牆壁損壞在强烈地震,由於地震引起的側向土壓力和慣性效應的牆本身。本檔案有關主要是對這些牆體的抗震性能和設計。現時的抗震設計方法有2種設計方法重力式擋土牆。第一種方法,它一直是共同的實踐多年,是根據設計規則提出的一篇論文由種子和懷特曼(15)。在他們的論文中使用的mononobeokabe分析,這是一個擴展的庫侖滑動楔理論在水准和垂直慣性項考慮的地震荷載。在這種方法中,設計是由一個强度控制標準。基於地震的另一種設計方法牆的位移是由理查茲和榆樹的建議(12)在1970年代後期理查茲和榆樹表明加速度小於在設計中使用的期望峰值加速度。這意味著
正在翻譯中..
 
其它語言
本翻譯工具支援: 世界語, 中文, 丹麥文, 亞塞拜然文, 亞美尼亞文, 伊博文, 俄文, 保加利亞文, 信德文, 偵測語言, 優魯巴文, 克林貢語, 克羅埃西亞文, 冰島文, 加泰羅尼亞文, 加里西亞文, 匈牙利文, 南非柯薩文, 南非祖魯文, 卡納達文, 印尼巽他文, 印尼文, 印度古哈拉地文, 印度文, 吉爾吉斯文, 哈薩克文, 喬治亞文, 土庫曼文, 土耳其文, 塔吉克文, 塞爾維亞文, 夏威夷文, 奇切瓦文, 威爾斯文, 孟加拉文, 宿霧文, 寮文, 尼泊爾文, 巴斯克文, 布爾文, 希伯來文, 希臘文, 帕施圖文, 庫德文, 弗利然文, 德文, 意第緒文, 愛沙尼亞文, 愛爾蘭文, 拉丁文, 拉脫維亞文, 挪威文, 捷克文, 斯洛伐克文, 斯洛維尼亞文, 斯瓦希里文, 旁遮普文, 日文, 歐利亞文 (奧里雅文), 毛利文, 法文, 波士尼亞文, 波斯文, 波蘭文, 泰文, 泰盧固文, 泰米爾文, 海地克里奧文, 烏克蘭文, 烏爾都文, 烏茲別克文, 爪哇文, 瑞典文, 瑟索托文, 白俄羅斯文, 盧安達文, 盧森堡文, 科西嘉文, 立陶宛文, 索馬里文, 紹納文, 維吾爾文, 緬甸文, 繁體中文, 羅馬尼亞文, 義大利文, 芬蘭文, 苗文, 英文, 荷蘭文, 菲律賓文, 葡萄牙文, 蒙古文, 薩摩亞文, 蘇格蘭的蓋爾文, 西班牙文, 豪沙文, 越南文, 錫蘭文, 阿姆哈拉文, 阿拉伯文, 阿爾巴尼亞文, 韃靼文, 韓文, 馬來文, 馬其頓文, 馬拉加斯文, 馬拉地文, 馬拉雅拉姆文, 馬耳他文, 高棉文, 等語言的翻譯.

Copyright ©2024 I Love Translation. All reserved.

E-mail: