AbstractExtracting of car license plate is important for identifying t的中文翻譯

AbstractExtracting of car license p

Abstract
Extracting of car license plate is important for identifying the car. Since there are some problems such as poor ambient lighting problem , bad weather problem and so on , the car images are distorted and the car license plate is difficult to be extracted. This paper proposes a method of extracting car license plate using motor vehicle regulation. In this method , some features of car license plate according to motor vehicle regulation such as color information , shape are applied to determine the candidates of car license plates. To certify the license plate , the characters , numbers and their patterns are recognized by backpropagation neural networks in windows which are opened in those boundaries of candidates. For the results of recognition by neural networks , the candidate which has characters and numbers patterns according to motor vehicle regulation is certified as license-plate region. Since the results of characters-pattern recognition is used to certify the license plate , the ability of license-plate extracting is enhanced and the car is identified simultaneously. The results of the experiments with 70 samples of real car images show the performance of car license-plate extraction by 84.29% , and the recognition rate is 80.81%.
0/5000
原始語言: -
目標語言: -
結果 (中文) 1: [復制]
復制成功!
抽象
提取的车牌是重要的是确定这辆车。因为,所以有一些问题,可怜的环境照明问题,恶劣的天气问题,汽车图像被扭曲和汽车车牌很难被提取。本文提出的提取车车牌使用机动车调控的方法。在此方法中,根据机动车辆规例的颜色信息,形状如汽车车牌的一些功能可应用于确定候选人的汽车牌照。证明车牌的字符、 数字和它们的模式被认可的反向传播神经网络在这些边界的候选人中打开的窗口中。用神经网络识别的结果,为候选人,已根据机动车规例的字符和数字模式作为车牌区域认证。由于字符模式识别的结果用来证明车牌,增强的车牌提取能力和这辆车同时确定。实验的结果与真车图象的 70 样本 84.29%,显示性能的车车牌提取和识别率是 80.81%。
正在翻譯中..
結果 (中文) 2:[復制]
復制成功!
Abstract
Extracting of car license plate is important for identifying the car. Since there are some problems such as poor ambient lighting problem , bad weather problem and so on , the car images are distorted and the car license plate is difficult to be extracted. This paper proposes a method of extracting car license plate using motor vehicle regulation. In this method , some features of car license plate according to motor vehicle regulation such as color information , shape are applied to determine the candidates of car license plates. To certify the license plate , the characters , numbers and their patterns are recognized by backpropagation neural networks in windows which are opened in those boundaries of candidates. For the results of recognition by neural networks , the candidate which has characters and numbers patterns according to motor vehicle regulation is certified as license-plate region. Since the results of characters-pattern recognition is used to certify the license plate , the ability of license-plate extracting is enhanced and the car is identified simultaneously. The results of the experiments with 70 samples of real car images show the performance of car license-plate extraction by 84.29% , and the recognition rate is 80.81%.
正在翻譯中..
結果 (中文) 3:[復制]
復制成功!
摘要
车牌提取识别汽车是重要的。因为有一些问题,如环境照明差的问题,恶劣的天气问题等等,汽车扭曲图像和车牌是很难被提取。本文提出了一种提取车牌使用机动车管理方法。在该方法中,一些特征的汽车车牌根据机动车的调控等形状颜色信息,用于确定车牌的候选人。证明车牌字符,数字,和他们的模式是公认的反向传播神经网络,在这些边界的候选人打开的窗口。对神经网络识别的结果,候选字符和数字模式,根据机动车辆条例注册为车牌区域。由于使用的字符模式识别的结果证明车牌,车牌提取的能力提高和汽车同时识别。70真正的汽车图像样本的实验结果表明的车牌提取84.29%的性能,且识别率是80.81%。
正在翻譯中..
 
其它語言
本翻譯工具支援: 世界語, 中文, 丹麥文, 亞塞拜然文, 亞美尼亞文, 伊博文, 俄文, 保加利亞文, 信德文, 偵測語言, 優魯巴文, 克林貢語, 克羅埃西亞文, 冰島文, 加泰羅尼亞文, 加里西亞文, 匈牙利文, 南非柯薩文, 南非祖魯文, 卡納達文, 印尼巽他文, 印尼文, 印度古哈拉地文, 印度文, 吉爾吉斯文, 哈薩克文, 喬治亞文, 土庫曼文, 土耳其文, 塔吉克文, 塞爾維亞文, 夏威夷文, 奇切瓦文, 威爾斯文, 孟加拉文, 宿霧文, 寮文, 尼泊爾文, 巴斯克文, 布爾文, 希伯來文, 希臘文, 帕施圖文, 庫德文, 弗利然文, 德文, 意第緒文, 愛沙尼亞文, 愛爾蘭文, 拉丁文, 拉脫維亞文, 挪威文, 捷克文, 斯洛伐克文, 斯洛維尼亞文, 斯瓦希里文, 旁遮普文, 日文, 歐利亞文 (奧里雅文), 毛利文, 法文, 波士尼亞文, 波斯文, 波蘭文, 泰文, 泰盧固文, 泰米爾文, 海地克里奧文, 烏克蘭文, 烏爾都文, 烏茲別克文, 爪哇文, 瑞典文, 瑟索托文, 白俄羅斯文, 盧安達文, 盧森堡文, 科西嘉文, 立陶宛文, 索馬里文, 紹納文, 維吾爾文, 緬甸文, 繁體中文, 羅馬尼亞文, 義大利文, 芬蘭文, 苗文, 英文, 荷蘭文, 菲律賓文, 葡萄牙文, 蒙古文, 薩摩亞文, 蘇格蘭的蓋爾文, 西班牙文, 豪沙文, 越南文, 錫蘭文, 阿姆哈拉文, 阿拉伯文, 阿爾巴尼亞文, 韃靼文, 韓文, 馬來文, 馬其頓文, 馬拉加斯文, 馬拉地文, 馬拉雅拉姆文, 馬耳他文, 高棉文, 等語言的翻譯.

Copyright ©2025 I Love Translation. All reserved.

E-mail: