近几年来,速度估计算法成为感应电机控制方法研究的热门课题。其中,扩展的卡尔曼滤波器(EKF)被认为是速度估算的最好方法。由于DSP处理器性能的英文翻譯

近几年来,速度估计算法成为感应电机控制方法研究的热门课题。其中,扩展的

近几年来,速度估计算法成为感应电机控制方法研究的热门课题。其中,扩展的卡尔曼滤波器(EKF)被认为是速度估算的最好方法。由于DSP处理器性能的大幅提升,EKF计算量大的问题得到很好解决,EKF越来越多的被用于工业应用。但是,EKF观测器通常用试错法来对噪声矩阵进行试验调整,造成EKF观测器并不能表现出最好的传动性能。为了提高EKF观测器的性能,使用遗传算法(GA)来优化噪声矩阵。在感应电机直接转矩控制(DTC)的Simulink仿真中,使用实数编码GA优化的EKF来估算电机速度。结果表明,该方法有很好的速度估算效果,对其他电机的闭环控制也有较大的借鉴意义和实用价值。
0/5000
原始語言: -
目標語言: -
結果 (英文) 1: [復制]
復制成功!
In recent years, the speed estimation of induction motor control method in hot topic. Among them, the extended Kalman filter (EKF) is considered to be the speed the best way to estimate. Because the DSP processor performance boost, EKF calculation problem is solved, EKF increasingly being used in industrial applications. However, the EKF observers usually use trial and error to test the noise matrix adjustment caused EKF observer and cannot show the best performance. In order to improve the performance of EKF observer, using genetic algorithm (GA) to optimize the noise matrix. Induction motor direct torque control (DTC) Simulink simulation, optimization using real-coded GA EKF to estimate the speed of motor. Results show that this method has a good effect of speed estimation, closed-loop control to other motor also has great significance and practical value.
正在翻譯中..
結果 (英文) 2:[復制]
復制成功!
In recent years, induction motor speed estimation algorithm become a hot topic of Control Methods. Among them, the extended Kalman filter (EKF) is considered to be the best way to speed estimation. Due to significantly enhance the performance of DSP processors, EKF large computation problem has been solved, EKF are increasingly being used in industrial applications. However, EKF observer usually trial and error to adjust the test noise matrix, causing EKF observer does not exhibit the best transmission performance. In order to improve the performance of EKF observer to optimize the use of genetic algorithms (GA) noise matrix. Induction Motor Direct Torque Control (DTC) of Simulink simulation to estimate the speed of the motor using real-coded GA optimization EKF. The results show that this method has a good estimate of the effect of speed, closed-loop control of the motor also have other great reference significance and practical value.
正在翻譯中..
結果 (英文) 3:[復制]
復制成功!
In recent years, the speed estimation algorithm has become a hot topic in the research of the control method of induction motors. Among them, the extended Calman filter (EKF) is considered to be the best method for velocity estimation. Due to the significant improvement in the performance of DSP processor, the problem of large amount of EKF computation is solved, and more and more EKF are used in industrial applications. However, the EKF observer usually use the method of trial and error to the noise matrix of test and adjustment, caused by EKF observer does not represent the best transmission performance. In order to improve the performance of the EKF observer, genetic algorithm (GA) is used to optimize the noise matrix. In the induction motor direct torque control (DTC) of the Simulink simulation, using the real number of encoding GA optimization of the EKF to estimate the motor speed. The results show that the proposed method has a good effect on the speed estimation, and it has great significance and practical value for the closed loop control of other motors.
正在翻譯中..
 
其它語言
本翻譯工具支援: 世界語, 中文, 丹麥文, 亞塞拜然文, 亞美尼亞文, 伊博文, 俄文, 保加利亞文, 信德文, 偵測語言, 優魯巴文, 克林貢語, 克羅埃西亞文, 冰島文, 加泰羅尼亞文, 加里西亞文, 匈牙利文, 南非柯薩文, 南非祖魯文, 卡納達文, 印尼巽他文, 印尼文, 印度古哈拉地文, 印度文, 吉爾吉斯文, 哈薩克文, 喬治亞文, 土庫曼文, 土耳其文, 塔吉克文, 塞爾維亞文, 夏威夷文, 奇切瓦文, 威爾斯文, 孟加拉文, 宿霧文, 寮文, 尼泊爾文, 巴斯克文, 布爾文, 希伯來文, 希臘文, 帕施圖文, 庫德文, 弗利然文, 德文, 意第緒文, 愛沙尼亞文, 愛爾蘭文, 拉丁文, 拉脫維亞文, 挪威文, 捷克文, 斯洛伐克文, 斯洛維尼亞文, 斯瓦希里文, 旁遮普文, 日文, 歐利亞文 (奧里雅文), 毛利文, 法文, 波士尼亞文, 波斯文, 波蘭文, 泰文, 泰盧固文, 泰米爾文, 海地克里奧文, 烏克蘭文, 烏爾都文, 烏茲別克文, 爪哇文, 瑞典文, 瑟索托文, 白俄羅斯文, 盧安達文, 盧森堡文, 科西嘉文, 立陶宛文, 索馬里文, 紹納文, 維吾爾文, 緬甸文, 繁體中文, 羅馬尼亞文, 義大利文, 芬蘭文, 苗文, 英文, 荷蘭文, 菲律賓文, 葡萄牙文, 蒙古文, 薩摩亞文, 蘇格蘭的蓋爾文, 西班牙文, 豪沙文, 越南文, 錫蘭文, 阿姆哈拉文, 阿拉伯文, 阿爾巴尼亞文, 韃靼文, 韓文, 馬來文, 馬其頓文, 馬拉加斯文, 馬拉地文, 馬拉雅拉姆文, 馬耳他文, 高棉文, 等語言的翻譯.

Copyright ©2025 I Love Translation. All reserved.

E-mail: