Moore et al. [29] studied the performance of plate-frame architecture 的中文翻譯

Moore et al. [29] studied the perfo

Moore et al. [29] studied the performance of plate-frame architecture with porous flow in microfluidic fuel cells via electrode designs that combine the microfluidic fuel cells with those of traditional plate frame PEM fuel cells and enable vertical stacking with little dead volume (Fig. 10). However, a high ohmic resistance through the electrolyte predominantly limited the performance of this type of fuel cell. Solloum et al.[30] presented a fuel cell stack architecture for membrane-less microfluidic cells that reuses reactants from one cell in a subsequent one (Fig. 11). The overall power density of the fuel cell was found to correlate positively with the reactant flow rate and negatively with the separating electrolyte flow rate.Lee et al. [31] studied the electrochemical characteristics of vanadium redox reactions on porous carbon electrodes for microfluidic fuel cell applications. The results agreed well with the measured polarisation curves from the operation of a microfluidic vanadium redox fuel cell that employed the same material as the flow-through porous electrodes. Shaegh et al.[37] worked on air-breathing microfluidic fuel cells with fuel reservoirs (Fig. 12) and found that the ohmic losses are mini-mal because of the low anode-to-cathode spacing and improved mass transport. These changes were the result of a supply of a uniform fuel concentration over the anode and efficient bubble removal from the anode active sites. Erik et al.[75] measured the microfluidic diffusion in H-cells, and their work proved that the H-cell design allows for a fast, efficient and cheap method to analyse diffusion.
0/5000
原始語言: -
目標語言: -
結果 (中文) 1: [復制]
復制成功!
摩尔等人 [29] 研究了性能板框架体系结构与渗流微流控燃料电池通过结合微流控的电极设计的燃料电池与传统板框架质子交换膜燃料电池和启用垂直叠加与死体积小 (图 10)。然而,通过电解液高欧姆电阻主要限制这种类型的燃料电池的性能。Solloum 等人 [30] 提出了一种燃料电池堆栈体系结构为膜少微流控细胞重用从一个单元格,在随后的一个反应物 (图 11)。总功率密度的燃料电池被发现与反应物流量和分离电解质流动率呈负相关。李等人 [31] 钒氧化还原反应在微流控燃料电池应用的多孔碳电极上的电化学特性进行了研究。结果与采用相同的材料作为流通过多孔电极的微流控钒氧化还原燃料电池的操作测量的极化曲线一致。Shaegh 等人 [37] 工作呼吸空气微流控燃料电池与燃料储层 (图 12),发现电阻损耗较低的阳极阴极间距迷你 mal 和改善大众运输。这些变化是从阳极活性部位阳极高效泡沫脱统一燃料浓度供应的结果。Erik 等人 [75] 测量微流控扩散 H-在细胞中,和他们的工作证明了 H 电池的设计允许快速、 高效、 廉价的方法来分析扩散。
正在翻譯中..
結果 (中文) 3:[復制]
復制成功!
穆尔等。[ 29 ]研究了板架结构的性能与渗流微燃料电池用电极的设计结合了微流体燃料电池与传统的板框PEM燃料电池和使垂直堆叠的小死体积(图10)。不过通过电解质的高欧姆电阻主要限制了这种类型的燃料电池的性能。solloum等人。[ 30 ]提出了一种燃料电池堆结构的无膜微流控细胞利用反应物在随后的一个细胞(图11)。的燃料电池的整体功率密度被发现与反应物的流速和负的分离的电解质流率呈正相关。[ 31 ]研究了微流体燃料电池用多孔碳电极上钒氧化还原反应的电化学特性。结果与实测极化曲线从微钒燃料电池,使用相同的材料为多孔导流电极的操作一致。shaegh等人。[ 37 ]在呼吸空气的微燃料电池的燃料库(图12),发现欧姆损耗小,因为低阳极到阴极间距和改进的质量传输。这些变化的结果是一个供给的均匀的燃料浓度的阳极和有效的气泡去除阳极活性位点的。埃里克等人。[ 75 ]用H-细胞微扩散,和他们的工作证明了细胞的设计允许快速,高效、廉价的分析扩散的方法。
正在翻譯中..
 
其它語言
本翻譯工具支援: 世界語, 中文, 丹麥文, 亞塞拜然文, 亞美尼亞文, 伊博文, 俄文, 保加利亞文, 信德文, 偵測語言, 優魯巴文, 克林貢語, 克羅埃西亞文, 冰島文, 加泰羅尼亞文, 加里西亞文, 匈牙利文, 南非柯薩文, 南非祖魯文, 卡納達文, 印尼巽他文, 印尼文, 印度古哈拉地文, 印度文, 吉爾吉斯文, 哈薩克文, 喬治亞文, 土庫曼文, 土耳其文, 塔吉克文, 塞爾維亞文, 夏威夷文, 奇切瓦文, 威爾斯文, 孟加拉文, 宿霧文, 寮文, 尼泊爾文, 巴斯克文, 布爾文, 希伯來文, 希臘文, 帕施圖文, 庫德文, 弗利然文, 德文, 意第緒文, 愛沙尼亞文, 愛爾蘭文, 拉丁文, 拉脫維亞文, 挪威文, 捷克文, 斯洛伐克文, 斯洛維尼亞文, 斯瓦希里文, 旁遮普文, 日文, 歐利亞文 (奧里雅文), 毛利文, 法文, 波士尼亞文, 波斯文, 波蘭文, 泰文, 泰盧固文, 泰米爾文, 海地克里奧文, 烏克蘭文, 烏爾都文, 烏茲別克文, 爪哇文, 瑞典文, 瑟索托文, 白俄羅斯文, 盧安達文, 盧森堡文, 科西嘉文, 立陶宛文, 索馬里文, 紹納文, 維吾爾文, 緬甸文, 繁體中文, 羅馬尼亞文, 義大利文, 芬蘭文, 苗文, 英文, 荷蘭文, 菲律賓文, 葡萄牙文, 蒙古文, 薩摩亞文, 蘇格蘭的蓋爾文, 西班牙文, 豪沙文, 越南文, 錫蘭文, 阿姆哈拉文, 阿拉伯文, 阿爾巴尼亞文, 韃靼文, 韓文, 馬來文, 馬其頓文, 馬拉加斯文, 馬拉地文, 馬拉雅拉姆文, 馬耳他文, 高棉文, 等語言的翻譯.

Copyright ©2024 I Love Translation. All reserved.

E-mail: