Acceleration responses at the crests of slopes aredependent on input w的繁體中文翻譯

Acceleration responses at the crest

Acceleration responses at the crests of slopes are
dependent on input wave frequency and location;
they are also functions of the plastic displacement
(or the robustness status) of the slope. The
amplification factor (Am), which is defined as the
ratio of the peak response acceleration at the slope
crest to the input peak base acceleration, increases
with increasing input wave frequency ( f ); it
decreases with increasing setback distance from the
slope crest, and with increasing plastic displacement
(or the extent of yielding) of the slope. Under a
plastic slope displacement of Dmax/Ht > 5.0–
5.9 3 102, the values of Am obtained at the slope
crest are less than unity, regardless of the input wave
frequency or the setback distance from the crest of
the slope.
2. The amplification factor (Am) obtained at the crest of
the slope shows nonlinear degradation with increasing
input ground acceleration (HPGA). The relationship
of Am to HPGA can be expressed using
logarithmic functions. These relationships shows
frequency-dependent behavior. Transitions from the
state of amplification towards the state of deamplification
at the crest of the slope consistently
precede the critical collapse state of the slopes. At
this transitional state, plastic slope displacements of
Dmax/Ht ¼ 0.25–5.9 3 102 occur.
3. The resonant acceleration response at the crest of the
slope does not need to be considered in the stability
evaluation at yield, or post-yield, for a slope with
Dmax/Ht . 5.0–5.9 3 102. For the at-yield or postyield
states of the slope, a measurable plastic slope
displacement, associated with major failure planes in
the backfill, occurs. A de-amplification state at the
slope crest is dominant at this stage of shaking. On
the other hand, the resonance acceleration response
at the slope crest is a major factor to be considered
in the seismic stability evaluation for a reinforced
slope with small plastic slope displacements of Dmax/
Ht < 0.25 3 102.
0/5000
原始語言: -
目標語言: -
結果 (繁體中文) 1: [復制]
復制成功!
Acceleration responses at the crests of slopes aredependent on input wave frequency and location;they are also functions of the plastic displacement(or the robustness status) of the slope. Theamplification factor (Am), which is defined as theratio of the peak response acceleration at the slopecrest to the input peak base acceleration, increaseswith increasing input wave frequency ( f ); itdecreases with increasing setback distance from theslope crest, and with increasing plastic displacement(or the extent of yielding) of the slope. Under aplastic slope displacement of Dmax/Ht > 5.0–5.9 3 102, the values of Am obtained at the slopecrest are less than unity, regardless of the input wavefrequency or the setback distance from the crest ofthe slope.2. The amplification factor (Am) obtained at the crest ofthe slope shows nonlinear degradation with increasinginput ground acceleration (HPGA). The relationshipof Am to HPGA can be expressed usinglogarithmic functions. These relationships showsfrequency-dependent behavior. Transitions from thestate of amplification towards the state of deamplificationat the crest of the slope consistentlyprecede the critical collapse state of the slopes. Atthis transitional state, plastic slope displacements ofDmax/Ht ¼ 0.25–5.9 3 102 occur.3. The resonant acceleration response at the crest of theslope does not need to be considered in the stabilityevaluation at yield, or post-yield, for a slope withDmax/Ht . 5.0–5.9 3 102. For the at-yield or postyieldstates of the slope, a measurable plastic slopedisplacement, associated with major failure planes inthe backfill, occurs. A de-amplification state at theslope crest is dominant at this stage of shaking. Onthe other hand, the resonance acceleration responseat the slope crest is a major factor to be consideredin the seismic stability evaluation for a reinforcedslope with small plastic slope displacements of Dmax/Ht < 0.25 3 102.
正在翻譯中..
結果 (繁體中文) 2:[復制]
復制成功!
在坡面的波峰加速度響應是
依賴於輸入波的頻率和位置;
它們也是塑料位移的函數
的斜率(或穩健性狀態)。的
放大係數(AM),其被定義為
在斜坡的峰值響應加速度比
波峰到輸入峰值鹼加速,增加
隨輸入波頻率(f); 它
隨著退縮距離從減小
坡頂,並隨著塑料位移
斜率(或產生的程度)。下
的Dmax塑料邊坡位移/ HT> 5.0-
5.9 3 10?2,在斜坡上午得到的值
峰值小於團結,無論輸入波的
頻率或從波峰受挫距離
的斜率。
2 。在波峰獲得的放大倍數(AM)
的斜率表明隨著非線性退化
輸入地面加速度(HPGA)。的關係
上午對HPGA可以使用表示
對數函數。這些關係示出了
頻率相關的行為。從視線
朝deamplification的狀態放大狀態,
在斜坡的頂部始終
先於山坡的臨界崩潰狀態。在
這種過渡狀態,塑料邊坡位移
的Dmax / HT¼0.25-5.9 3 10?2出現。
3。在的波峰的諧振加速度響應
斜率並不需要在穩定性被認為是
評估在產量,或屈服後,對於具有斜坡
的Dmax / HT。5.0-5.9 3 10?2。對於在產量或屈服後
斜率的狀態,可測量的塑料斜坡
位移,在出現重大故障的飛機相關
的回填,發生。在A去放大狀態
坡頂是在這個階段晃動佔主導地位。在
另一方面,共振加速度反應
在坡頂是需要考慮的一個主要因素
在地震穩定性評價鋼筋
用的Dmax /小塑料邊坡位移坡
高程<0.25 3 10?2。
正在翻譯中..
結果 (繁體中文) 3:[復制]
復制成功!
加速度響應在斜坡的波峰依賴於輸入波頻率和位置;它們也是塑性位移的函數(或魯棒狀態)的斜率。這個放大係數(即),它被定義為邊坡峰值響應加速度之比波峰至輸入峰值加速度,新增新增輸入波頻率(法);减少與新增的挫折距離斜坡頂,並隨著塑性位移(或邊坡的屈服範圍)。下一個塑膠邊坡位移Dmax / HT > 5–3 102 5.9,在邊坡上得到的值波峰小於1,不管輸入波從波峰的頻率或挫折距離邊坡。2。在波峰處獲得的放大係數(上午)邊坡呈非線性退化輸入地面加速度(HPGA)。的關係我對下丘腦-垂體-性腺軸可以表示使用對數函數。這些關係表明頻率相關行為。從過渡放大到衰减狀態在斜坡的頂部先於邊坡臨界坍塌狀態。在這種過渡狀態,塑膠邊坡位移DMAX / HT¼0.25–5.9 3 102發生。3。在波峰處的共振加速度響應不需要考慮邊坡的穩定性一個斜坡帶的產量,或後期產量的評估DMAX / HT。5 3 102 5.9。對於在產量或屈服斜坡的狀態,可測的塑膠邊坡位移,與主要的故障面發生回填。阿德放大態在振動的這一階段,斜坡頂是占主導地位的。在另一方面,共振加速度響應在斜坡頂是一個重要的因素來考慮在地震穩定性評估中加强隨著距離/塑膠小邊坡位移邊坡HT < 0.25 3 102。
正在翻譯中..
 
其它語言
本翻譯工具支援: 世界語, 中文, 丹麥文, 亞塞拜然文, 亞美尼亞文, 伊博文, 俄文, 保加利亞文, 信德文, 偵測語言, 優魯巴文, 克林貢語, 克羅埃西亞文, 冰島文, 加泰羅尼亞文, 加里西亞文, 匈牙利文, 南非柯薩文, 南非祖魯文, 卡納達文, 印尼巽他文, 印尼文, 印度古哈拉地文, 印度文, 吉爾吉斯文, 哈薩克文, 喬治亞文, 土庫曼文, 土耳其文, 塔吉克文, 塞爾維亞文, 夏威夷文, 奇切瓦文, 威爾斯文, 孟加拉文, 宿霧文, 寮文, 尼泊爾文, 巴斯克文, 布爾文, 希伯來文, 希臘文, 帕施圖文, 庫德文, 弗利然文, 德文, 意第緒文, 愛沙尼亞文, 愛爾蘭文, 拉丁文, 拉脫維亞文, 挪威文, 捷克文, 斯洛伐克文, 斯洛維尼亞文, 斯瓦希里文, 旁遮普文, 日文, 歐利亞文 (奧里雅文), 毛利文, 法文, 波士尼亞文, 波斯文, 波蘭文, 泰文, 泰盧固文, 泰米爾文, 海地克里奧文, 烏克蘭文, 烏爾都文, 烏茲別克文, 爪哇文, 瑞典文, 瑟索托文, 白俄羅斯文, 盧安達文, 盧森堡文, 科西嘉文, 立陶宛文, 索馬里文, 紹納文, 維吾爾文, 緬甸文, 繁體中文, 羅馬尼亞文, 義大利文, 芬蘭文, 苗文, 英文, 荷蘭文, 菲律賓文, 葡萄牙文, 蒙古文, 薩摩亞文, 蘇格蘭的蓋爾文, 西班牙文, 豪沙文, 越南文, 錫蘭文, 阿姆哈拉文, 阿拉伯文, 阿爾巴尼亞文, 韃靼文, 韓文, 馬來文, 馬其頓文, 馬拉加斯文, 馬拉地文, 馬拉雅拉姆文, 馬耳他文, 高棉文, 等語言的翻譯.

Copyright ©2024 I Love Translation. All reserved.

E-mail: