Cluster analysis was used to develop a taxonomy based on the construct的繁體中文翻譯

Cluster analysis was used to develo

Cluster analysis was used to develop a taxonomy based on the constructs for lean
and agile supply chain characteristics. We followed several rules similar to those
used in Kathuria (2000) and Frohlich and Dixon (2001) to select the number of
clusters. As in Frohlich and Dixon (2001), we used a hierarchical cluster analysis
to generate a hierarchical dendogram and an agglomeration schedule table. Our
goal was to balance parsimony or few clusters with accuracy (more clusters retains
more data). The choice of the final number of clusters is a subjective one that is
generally guided by a few rules of thumb. Lehmann (1979) indicates the number
of clusters should lie between n/30 and n/60. Because our sample size is 604,
this would suggest a solution with between 10 and 20 clusters. Unfortunately,
this high number of clusters makes managerial interpretability difficult due to
the lack of parsimony. We employed K-mean cluster analysis to generate three-,
four-, and five-cluster solutions. After a careful examination of the three-, four-
, and five-cluster solutions, we decided that the four-cluster solution shown in
Table 4 provided the best interpretability. The five-cluster group had two clusters
that were very similar in that they were heavily focused on lean with very little
emphasis on agile. The three-cluster choice did not have the group that focused
primarily on agile to the exclusion of lean. We feel that the four-cluster choice
provides more explanatory power than the choice of three clusters without the
added complexity of a five-cluster solution, thus we chose four clusters, which is
a common number in the literature (Roth & Miller, 1992; Boyer, Ward, & Leong,
1996). We prefer the four-cluster solution because it provides more explanatory
power—in fact we believe the difference between Lean/agile and Traditional to be very important.
0/5000
原始語言: -
目標語言: -
結果 (繁體中文) 1: [復制]
復制成功!
Cluster analysis was used to develop a taxonomy based on the constructs for leanand agile supply chain characteristics. We followed several rules similar to thoseused in Kathuria (2000) and Frohlich and Dixon (2001) to select the number ofclusters. As in Frohlich and Dixon (2001), we used a hierarchical cluster analysisto generate a hierarchical dendogram and an agglomeration schedule table. Ourgoal was to balance parsimony or few clusters with accuracy (more clusters retainsmore data). The choice of the final number of clusters is a subjective one that isgenerally guided by a few rules of thumb. Lehmann (1979) indicates the numberof clusters should lie between n/30 and n/60. Because our sample size is 604,this would suggest a solution with between 10 and 20 clusters. Unfortunately,this high number of clusters makes managerial interpretability difficult due tothe lack of parsimony. We employed K-mean cluster analysis to generate three-,four-, and five-cluster solutions. After a careful examination of the three-, four-, and five-cluster solutions, we decided that the four-cluster solution shown inTable 4 provided the best interpretability. The five-cluster group had two clustersthat were very similar in that they were heavily focused on lean with very littleemphasis on agile. The three-cluster choice did not have the group that focusedprimarily on agile to the exclusion of lean. We feel that the four-cluster choiceprovides more explanatory power than the choice of three clusters without theadded complexity of a five-cluster solution, thus we chose four clusters, which isa common number in the literature (Roth & Miller, 1992; Boyer, Ward, & Leong,1996). We prefer the four-cluster solution because it provides more explanatorypower—in fact we believe the difference between Lean/agile and Traditional to be very important.
正在翻譯中..
結果 (繁體中文) 2:[復制]
復制成功!
聚類分析被用於開發基於構建精益分類法
和敏捷供應鏈的特點。我們遵循類似於多個規則
中Kathuria(2000)和弗羅利希和狄克遜(2001)用於選擇的數量
的群集。如在弗羅利希和狄克遜(2001),我們使用了聚類分析
,以產生一個分層dendogram和附聚調度表。我們的
目標是要平衡簡約性或幾簇精度(多個群集保留
更多的數據)。簇的音響最終數目的選擇是一個主觀一個是
通常遵循拇指的一些規則。萊曼(1979)表示數字
集群應該N / 30和n / 60之間。因為我們的樣本大小是604,
這將表明與10至20簇的溶液。不幸的是,
這種高數集群管理,使DIF解釋性邪教科幻由於
缺乏簡約性。我們採用K均值聚類分析,生成三,
四和網絡VE-集群解決方案。經過仔細檢查三中,四
和網絡VE-集群解決方案,我們決定在所示的四個集群解決方案
表4中提供最好的可解釋性。該網絡已經群集組兩個組
的人在,他們過於注重精益很少很相似
強調敏捷。這三個集群的選擇沒有那麼專注於集團
主要在敏捷精益的排斥。我們認為,四集群的選擇
提供了更多的解釋力比三個集群,而不選擇
增加了網絡的複雜性,VE-集群解決方案,因此我們選擇了四組,這是
在文獻中常見的一些(羅斯和米勒,1992;博耶,沃德,與梁,
1996年)。我們看好四集群解決方案,因為它提供了更多的解釋
權力,實際上我們認為精益之間/敏捷和傳統是非常重要的區別。
正在翻譯中..
 
其它語言
本翻譯工具支援: 世界語, 中文, 丹麥文, 亞塞拜然文, 亞美尼亞文, 伊博文, 俄文, 保加利亞文, 信德文, 偵測語言, 優魯巴文, 克林貢語, 克羅埃西亞文, 冰島文, 加泰羅尼亞文, 加里西亞文, 匈牙利文, 南非柯薩文, 南非祖魯文, 卡納達文, 印尼巽他文, 印尼文, 印度古哈拉地文, 印度文, 吉爾吉斯文, 哈薩克文, 喬治亞文, 土庫曼文, 土耳其文, 塔吉克文, 塞爾維亞文, 夏威夷文, 奇切瓦文, 威爾斯文, 孟加拉文, 宿霧文, 寮文, 尼泊爾文, 巴斯克文, 布爾文, 希伯來文, 希臘文, 帕施圖文, 庫德文, 弗利然文, 德文, 意第緒文, 愛沙尼亞文, 愛爾蘭文, 拉丁文, 拉脫維亞文, 挪威文, 捷克文, 斯洛伐克文, 斯洛維尼亞文, 斯瓦希里文, 旁遮普文, 日文, 歐利亞文 (奧里雅文), 毛利文, 法文, 波士尼亞文, 波斯文, 波蘭文, 泰文, 泰盧固文, 泰米爾文, 海地克里奧文, 烏克蘭文, 烏爾都文, 烏茲別克文, 爪哇文, 瑞典文, 瑟索托文, 白俄羅斯文, 盧安達文, 盧森堡文, 科西嘉文, 立陶宛文, 索馬里文, 紹納文, 維吾爾文, 緬甸文, 繁體中文, 羅馬尼亞文, 義大利文, 芬蘭文, 苗文, 英文, 荷蘭文, 菲律賓文, 葡萄牙文, 蒙古文, 薩摩亞文, 蘇格蘭的蓋爾文, 西班牙文, 豪沙文, 越南文, 錫蘭文, 阿姆哈拉文, 阿拉伯文, 阿爾巴尼亞文, 韃靼文, 韓文, 馬來文, 馬其頓文, 馬拉加斯文, 馬拉地文, 馬拉雅拉姆文, 馬耳他文, 高棉文, 等語言的翻譯.

Copyright ©2024 I Love Translation. All reserved.

E-mail: