For the last two decades, geosynthetic-reinforced soil retaining walls的繁體中文翻譯

For the last two decades, geosynthe

For the last two decades, geosynthetic-reinforced soil retaining walls (GRS RWs) with a
stage-constructed full-height rigid (FHR) facing have been constructed for railways, highways and
other facilities and have shown greater seismic resistance than conventional retaining wall structures
(Tatsuoka et al., 2009). Geogrids are commonly used as planar reinforcements to tensile-reinforce the
backfill of RWs, embankments and other soil structures.
However, GRS RWs with geogrids may encounter the following potential problems: 1) for ordinary
structures, the local soil materials which may be poorly graded or include larger particles would be
inevitably used as backfill. This would result in a decrease in its deformability. On the other hand, to
obtain a high friction resistance with geogrids, the backfill soil is restricted to sandy soil and heavy compaction work should be conducted which lead to an increase in construction cost; 2) for some
important structures such as high-speed railways, the requirement of seismic stability and allowable
deformation of GRS RWs are higher than ordinary structures, which requires the reinforcement to
have a higher resistance. In order to alleviate these problems and improve the seismic performance of
GRS RWs, a new type of geocell (Fig. 1a) was developed by Han et al. (2013), which has a different
cell shape compared with traditional type geocell (diamond-shaped geocell, Fig. 1b), called
square-shaped geocell having straight longitudinal members with transversal walls at separated
locations. The pullout test results indicated that square-shaped geocell showed only slightly
progressive deformation and therefore showing higher pullout resistance and initial stiffness than
diamond-shaped geocell. What’s more, Han et al. (2013) conducted a series of pullout tests using
square-shaped geocell models and a prototype geogrid (Tensar SS-35) embedded in gravelly soils
having different particle sizes indicating the important benefit of square-shaped geocell which can
confine large soil particles in their three dimensional cells and respective cells provide large anchorage
capacity when pull laterally compared with geogrids. In this paper, the seismic performance of GRS
RWs reinforced by square-shaped geocell models and geogrid models was evaluated by two shaking
table model tests. In addition, a gravity-type retaining wall model was also tested for comparison.
0/5000
原始語言: -
目標語言: -
結果 (繁體中文) 1: [復制]
復制成功!
為過去二十年來,土工合成材料加筋土擋牆 (GRS RWs)構造了階段構造全高剛性 (FHR) 面對,用於鐵路、 公路和其他設施和顯示更大的抗震性能,比傳統的擋牆結構(辰岡 et al.2009年)。土工格柵作為平面增援上通常用於拉伸加強回填土的 RWs、 堤防和其他土壤結構。然而,與土工格柵 GRS RWs 可能會遇到以下潛在問題︰ 1) 為普通結構,當地土壤材料可差分級或包括較大的顆粒會不可避免地用作回填。這會導致其變形能力下降。另一方面,對獲得高的摩擦阻力與土工格柵、 回填土是限於沙質土壤和重型擊實工作應進行導致增加建設成本;2) 對於一些高速鐵路,地震穩定性和允許的要求等重要結構GRS RWs 變形均高於普通的結構,需要對加固有較高的阻力。為了緩解這些問題,提高結構的抗震性能GRS RWs,一種新型的土工格室 (圖 1a) 被開發了由漢等人 (2013 年),有不同相比傳統類型土工格室 (鑽石形土工格室,圖 1b),被稱為細胞形狀square-shaped geocell having straight longitudinal members with transversal walls at separatedlocations. The pullout test results indicated that square-shaped geocell showed only slightlyprogressive deformation and therefore showing higher pullout resistance and initial stiffness thandiamond-shaped geocell. What’s more, Han et al. (2013) conducted a series of pullout tests usingsquare-shaped geocell models and a prototype geogrid (Tensar SS-35) embedded in gravelly soilshaving different particle sizes indicating the important benefit of square-shaped geocell which canconfine large soil particles in their three dimensional cells and respective cells provide large anchoragecapacity when pull laterally compared with geogrids. In this paper, the seismic performance of GRSRWs reinforced by square-shaped geocell models and geogrid models was evaluated by two shakingtable model tests. In addition, a gravity-type retaining wall model was also tested for comparison.
正在翻譯中..
結果 (繁體中文) 2:[復制]
復制成功!
在過去的二十年裡,土工合成材料加固土擋土牆(GRS RW的)一個
階段建造的全高剛性(FHR)飾面已建成鐵路,公路和
其他設施,並已顯示出比傳統的擋土牆結構更大的抗震
(龍岡等人,2009)。土工格柵通常用作平面增援拉伸加強
RW的,堤岸等的土壤結構的回填。
然而,GRS RW的土工格柵可能會遇到以下的潛在問題:1)對於普通
的結構,當地土質材料可被很差分級或有較大的顆粒將
不可避免地用作回填。這將導致在其變形的降低。在另一方面,為了
獲得具有土工格柵的高摩擦性,回填土壤限制在沙土和重壓實工作應當進行這導致增加建築成本; 2)對於一些
如高速鐵路的重要結構,地震的穩定性的要求和允許
GRS RW的變形比普通的結構,這需要加固更高
具有更高的抗性。為了緩解這些問題,提高了抗震性能
GRS RW的一種新型土工格室(圖1a)是由漢等人開發。(2013),其具有不同
與傳統類型土工格室相比細胞形狀(菱形土工格室,圖1b),稱為
方形土工格室具有在分離與橫向壁直的縱向構件
的位置。該拉拔試驗結果表明,方方正正的土工格室顯示僅略有
漸進變形,因此顯示出更高的抗拔力和初始剛度比
菱形土工格室。更重要的是,韓寒等人。(2013)進行使用了一系列的拉拔試驗
方形土工格室模型和嵌入在礫石土壤原型格柵(坦薩SS-35),
具有不同顆粒尺寸指示正方形土工格室的重要的好處,可以
在限制大土壤顆粒其三維細胞和各個小區提供大錨地
時,橫向拉土工格柵相比的能力。在本文中,GRS的抗震性能
由方形土工格室模型和模型土工格柵加筋RW的是由兩個搖評估
台模型試驗。另外,重力型擋土牆模型也測試用於比較。
正在翻譯中..
 
其它語言
本翻譯工具支援: 世界語, 中文, 丹麥文, 亞塞拜然文, 亞美尼亞文, 伊博文, 俄文, 保加利亞文, 信德文, 偵測語言, 優魯巴文, 克林貢語, 克羅埃西亞文, 冰島文, 加泰羅尼亞文, 加里西亞文, 匈牙利文, 南非柯薩文, 南非祖魯文, 卡納達文, 印尼巽他文, 印尼文, 印度古哈拉地文, 印度文, 吉爾吉斯文, 哈薩克文, 喬治亞文, 土庫曼文, 土耳其文, 塔吉克文, 塞爾維亞文, 夏威夷文, 奇切瓦文, 威爾斯文, 孟加拉文, 宿霧文, 寮文, 尼泊爾文, 巴斯克文, 布爾文, 希伯來文, 希臘文, 帕施圖文, 庫德文, 弗利然文, 德文, 意第緒文, 愛沙尼亞文, 愛爾蘭文, 拉丁文, 拉脫維亞文, 挪威文, 捷克文, 斯洛伐克文, 斯洛維尼亞文, 斯瓦希里文, 旁遮普文, 日文, 歐利亞文 (奧里雅文), 毛利文, 法文, 波士尼亞文, 波斯文, 波蘭文, 泰文, 泰盧固文, 泰米爾文, 海地克里奧文, 烏克蘭文, 烏爾都文, 烏茲別克文, 爪哇文, 瑞典文, 瑟索托文, 白俄羅斯文, 盧安達文, 盧森堡文, 科西嘉文, 立陶宛文, 索馬里文, 紹納文, 維吾爾文, 緬甸文, 繁體中文, 羅馬尼亞文, 義大利文, 芬蘭文, 苗文, 英文, 荷蘭文, 菲律賓文, 葡萄牙文, 蒙古文, 薩摩亞文, 蘇格蘭的蓋爾文, 西班牙文, 豪沙文, 越南文, 錫蘭文, 阿姆哈拉文, 阿拉伯文, 阿爾巴尼亞文, 韃靼文, 韓文, 馬來文, 馬其頓文, 馬拉加斯文, 馬拉地文, 馬拉雅拉姆文, 馬耳他文, 高棉文, 等語言的翻譯.

Copyright ©2025 I Love Translation. All reserved.

E-mail: