A 2D plane stress finite-element model for the masonry arch bridge is 的中文翻譯

A 2D plane stress finite-element mo

A 2D plane stress finite-element model for the masonry arch bridge is shown in Fig. 5. The brick masonry was assumed to have a modulus of 1,800 MPa, Poisson’s ratio of 0.2, and a specific fracture energy of 5.8 N-m/m2. The soil infill was idealized to have a modulus of 800 MPa, with a Poisson’s ratio of 0.18. A relatively small tensile strength of 0.3 MPa was assumed for the masonry, with a similar value of 0.3 MPa for the infill. These values are obtained through an iterative process of model calibration using the field measurements of the static load deflection and quasi-static moving load studies. The boundary condition on the vertical face of the abutment (left end of Span 2) is restrained in the longitudinal traffic direction, and the base of the abutments and central pier is constrained in the horizontal and vertical directions. The boundary at the right abutment of Span 1 is elastically constrained for longitudinal movement using linear springs (the value of this spring constant is reported later).


Read More: http://ascelibrary.org/doi/full/10.1061/%28ASCE%29BE.1943-5592.0000338
0/5000
原始語言: -
目標語言: -
結果 (中文) 1: [復制]
復制成功!
砌石拱大桥 2D 平面应力有限元模型如图 5 所示。砖砌体被假定 1,800 MPa 模量、 泊松比的 0.2、 和 5.8 m2-N-m 具体骨折能源。土填实被理想化了要与泊松比的 0.18 800 MPa、 弹性模量。一个相对较小的拉伸强度为 0.3 MPa 被假定砌体,与类似的值填充为 0.3 m p a。这些值被通过使用静态荷载挠度和准静态运动负荷研究的实地测量模型校正的迭代过程。(左底跨度 2) 桥台的垂直脸上边界条件约束纵向交通的方向,和桥台和中环码头的基础在水平和垂直方向的约束。在大跨度 1 右坝肩的边界弹性约束的纵向运动使用线性弹簧 (稍后报告此弹簧常数的值).


阅读更多: http://ascelibrary.org/doi/full/10.1061/%28ASCE%29BE.1943-5592.0000338
正在翻譯中..
結果 (中文) 2:[復制]
復制成功!
A 2D plane stress finite-element model for the masonry arch bridge is shown in Fig. 5. The brick masonry was assumed to have a modulus of 1,800 MPa, Poisson’s ratio of 0.2, and a specific fracture energy of 5.8 N-m/m2. The soil infill was idealized to have a modulus of 800 MPa, with a Poisson’s ratio of 0.18. A relatively small tensile strength of 0.3 MPa was assumed for the masonry, with a similar value of 0.3 MPa for the infill. These values are obtained through an iterative process of model calibration using the field measurements of the static load deflection and quasi-static moving load studies. The boundary condition on the vertical face of the abutment (left end of Span 2) is restrained in the longitudinal traffic direction, and the base of the abutments and central pier is constrained in the horizontal and vertical directions. The boundary at the right abutment of Span 1 is elastically constrained for longitudinal movement using linear springs (the value of this spring constant is reported later).


Read More: http://ascelibrary.org/doi/full/10.1061/%28ASCE%29BE.1943-5592.0000338
正在翻譯中..
結果 (中文) 3:[復制]
復制成功!
一个二维平面应力有限元为砖石拱桥模型如图5所示。砖砌体被假定为具有弹性模量为1800 MPa,泊松比为0.2,和5.8米/平方米的特定的断裂能。土壤填充是理想化的具有弹性模量为800兆帕,0.18的泊松比。一个相对较小的拉伸强度为0.3兆帕为砌体承担,用于填充0.3 MPa相似的价值。通过静载挠度和准静态运动负荷研究实地测量模型校正迭代过程得到这些值。对基垂直面边界条件(Span 2左端)限制在纵向交通方向,而桥台和桥墩基础的中心在水平和垂直方向的约束。边界在右坝肩的跨度1弹性约束的纵向运动,采用线性弹簧(此弹簧常数的值是稍后的报道)。


阅读更多:HTTP:/ / ascelibrary。org / DOI / / 10.1061 / 28asce 29be.1943-5592.0000338 % %
正在翻譯中..
 
其它語言
本翻譯工具支援: 世界語, 中文, 丹麥文, 亞塞拜然文, 亞美尼亞文, 伊博文, 俄文, 保加利亞文, 信德文, 偵測語言, 優魯巴文, 克林貢語, 克羅埃西亞文, 冰島文, 加泰羅尼亞文, 加里西亞文, 匈牙利文, 南非柯薩文, 南非祖魯文, 卡納達文, 印尼巽他文, 印尼文, 印度古哈拉地文, 印度文, 吉爾吉斯文, 哈薩克文, 喬治亞文, 土庫曼文, 土耳其文, 塔吉克文, 塞爾維亞文, 夏威夷文, 奇切瓦文, 威爾斯文, 孟加拉文, 宿霧文, 寮文, 尼泊爾文, 巴斯克文, 布爾文, 希伯來文, 希臘文, 帕施圖文, 庫德文, 弗利然文, 德文, 意第緒文, 愛沙尼亞文, 愛爾蘭文, 拉丁文, 拉脫維亞文, 挪威文, 捷克文, 斯洛伐克文, 斯洛維尼亞文, 斯瓦希里文, 旁遮普文, 日文, 歐利亞文 (奧里雅文), 毛利文, 法文, 波士尼亞文, 波斯文, 波蘭文, 泰文, 泰盧固文, 泰米爾文, 海地克里奧文, 烏克蘭文, 烏爾都文, 烏茲別克文, 爪哇文, 瑞典文, 瑟索托文, 白俄羅斯文, 盧安達文, 盧森堡文, 科西嘉文, 立陶宛文, 索馬里文, 紹納文, 維吾爾文, 緬甸文, 繁體中文, 羅馬尼亞文, 義大利文, 芬蘭文, 苗文, 英文, 荷蘭文, 菲律賓文, 葡萄牙文, 蒙古文, 薩摩亞文, 蘇格蘭的蓋爾文, 西班牙文, 豪沙文, 越南文, 錫蘭文, 阿姆哈拉文, 阿拉伯文, 阿爾巴尼亞文, 韃靼文, 韓文, 馬來文, 馬其頓文, 馬拉加斯文, 馬拉地文, 馬拉雅拉姆文, 馬耳他文, 高棉文, 等語言的翻譯.

Copyright ©2024 I Love Translation. All reserved.

E-mail: