Hydrolysis of HMT forms the protonated species(CH2)6N4H+, which is exp的繁體中文翻譯

Hydrolysis of HMT forms the protona

Hydrolysis of HMT forms the protonated species
(CH2)6N4H+, which is expected to be adsorbed on the negatively
charged gum arabic. However, because of the very
low isoelectric point of gum arabic, it is still basically negatively
charged to initiate the double-layered Zinc nitrate hydroxide
hydrate phase. Then local protonated HMT was
able to undergo further hydrolysis to generate hydroxide
before growth of ZnO according to the shown reactions.
Our proposed mechanism for the physical process of formation
of the twin-brush ZnO mesocrystals is shown in
Scheme 1. In solution, Zn ions (Scheme 1 a) reacted with hydroxyl
ions which originated from thermal decomposition of
HMT[47] to form two kinds of intermediate nanoparticles
with a size ranging from 3 to 5 nm. The major one is zinc nitrate
hydroxide hydrate Zn5ACHTUNGTRENUNG(NO3)2(OH)8·2H2O) and the
minor one is zinc hydroxide Zn(OH)2 (Scheme 1 b). Then,
mediated by gum arabic, the nanoparticles aggregate together
to form nanoplates with a uneven surface and thickness
of about 10 nm (Scheme 1 c). Polymer-mediated aggregation
of ZnO has been observed previously under hydrothermal
conditions.[48] During the process, these nanoplates self-adjusted
their orientations to form well-ordered crystalline
nanoplates before phase transformation.
After that, the surface of double-layered nanoplates with
the size about 200 nm in diameter underwent surface recrystallization
(Scheme 1 e). Because of the long-range intrinsic
dipole field of ZnO nanoplates, two nanoplates with opposite
dipolar directions connect together to cancel out the
electric field of whole double-layered nanoplate by utilizing
negatively charged gum arabic as a mediating layer. During
this stage, the nanoplates would adjust their orientation by
small mineral bridges between two opposite parts of the
double-layer plate. In addition, Zn5ACHTUNGTRENUNG(NO3)2(OH)8·2H2O with
dipolar characteristic would stack on both surfaces of the
double nanoplates before undergoing a phase transformation
(Scheme 1 d). At the same time, while the nanoplates
were almost all converted to ZnO, nanorods would form on
the layered nanoplates. Thus, the size and thickness of multilayered
nanoplates increased rapidly, and the surface morphology
of both sides of mesocrystals also changes from flat
to concave (Scheme 1 f). The multilayered ZnO nanoplates
on the whole mesocrystal still kept their preferential orientation
due to the small bridges connecting them. The edges
of the concave surfaces on both sides of mesocrystals would
provide a growth site to attract amorphous intermediates,
followed by formation of ZnO nanorods on both sides
(Scheme 1 g). Finally, the twin-brush ZnO mesocrystals were
obtained.
Finally, we make some comparisons with existing works
and summarize the impact of the reaction conditions on the
morphology. First, in our mechanism the growing ends of
the twin crystals are negatively
charged due to the O-terminated
surface of the (0001) plane,
which is less protected, as was
found in other similar reported
cases of ZnO twin crystals with
organic anions as the additive.
Cho et al. recently obtained a
twin crystal form of ZnO using
ascorbic acid as an additive.[49]
However, their structures
tended to be polycrystalline
and nonporous instead of
single-crystal-like and porous.
Apparently, the less diffusive
polymer gum arabic would mediate
better oriented attachment
and stay in the mesocrystal rather than moving out of
it. Generally, polyelectrolyte-encapsulated inorganic nanocrystals
could orientedly attach to each other better because
they have a longer time to search for the best epitaxial fit
and fusion. In our previous work on preparing twin-plate
forms of ZnO, gelatin was used. Gelatin has both carboxylate
groups and positively charged amine groups. Thus, both
of the polar planes (O- and Zn-terminated faces) are
adsorbACHTUNGTRENUNGed by gelatin. Growth in the c direction is thus more
inhibited and results in the twin-plate form. Gum arabic is
an interesting intermediate case; it is a mixture of saccharides
and glycoproteins showing excellent properties as a
glue and binder to many different surfaces. Although it is
highly negatively charged at neutral pH (Supporting Information
Figure S5), there are still some amine groups to protect
the growing O-terminated surfaces of the twin brush
somewhat. Initially, the growth was thus still in plate form.
However, when the pH value drops at a later stage the Oterminated
surface becomes less protected and at the same
time the dipole field originating at the center becomes
stronger to guide the growth to a nanorod form and bend
along the field direction (Scheme 2) to a final vertical direction.
When strong simple electrolytes are added, the dipole
field is greatly screened and the structure reverts to a twin-
Scheme 1. Schematic of the formation mechanism of twin-brush ZnO mesocrystals.
Chem. Eur. J. 2012, 18, 16104 – 16113  2012 Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim w
0/5000
原始語言: -
目標語言: -
結果 (繁體中文) 1: [復制]
復制成功!
HMT 水解形成質子化物種(CH2) 6N4H +,預計將會吸附在消極阿拉伯樹膠帶電。然而,由於的很阿拉伯樹膠的低等電點,它是仍然基本上消極負責啟動雙層鋅硝酸氫氧化水合物相。HMT 當時當地的質子化能夠接受進一步水解生成氫氧化前圖所示的反應氧化鋅的增長。我們建議的機制形成的物理過程雙刷氧化鋅 mesocrystals 中所示方案 1。在解決方案中,鋅離子 (方案 1) 與羥基反應這源于熱分解的離子HMT [47],形成兩種中間納米粒子具有大小從 3 到 5 毫微米。其中主要是鋅、 硝酸鋅氫氧化水合物 Zn5ACHTUNGTRENUNG(NO3)2(OH)8·2H2O) 和未成年人是鋅氫氧化鋅 (OH) 2 (計畫 1 b)。然後,介導阿拉伯樹膠,納米粒子聚合在一起向表單納米厚度與路面不平約 10 nm (1 c 計畫)。聚合物介導的聚合氧化鋅下觀察了以前熱液條件。[48] 在過程中,這些納米自我調整其形成有序取向結晶前相變納米。在那之後,與雙層納米表面大小約 200 毫微米直徑經歷了表面的再結晶(方案 1 e)。由於遠端內在偶極子場的對面有兩個納米 ZnO 納米偶極方向連接在一起以抵消通過利用整個雙層奈米的電場作為一個仲介層帶負電阿拉伯樹膠。期間這個階段,納米將調整其方向由小礦物橋之間的兩個相反部分雙電層板。此外,Zn5ACHTUNGTRENUNG (NO3) 2 (OH) 8·2H2O 與偶極特性將堆疊上的兩面在接受相變前雙納米(方案 1 d)。在相同的時間,同時納米幾乎都是轉換為氧化鋅,納米棒會形成上層狀的納米。因此,大小和厚度與多層迅速增加,納米和表面形貌雙方的 mesocrystals 也會更改從平凹 (方案 1 f)。多層的氧化鋅納米mesocrystal 整體上仍保持其擇優取向由於小橋樑連接它們。邊緣mesocrystals 兩側的凹曲面會提供一個增長網站吸引非晶的中間體,雙方隨後形成的氧化鋅納米棒(方案 1 g)。最後,雙刷 ZnO mesocrystals 了獲得。最後,我們用一些比較現有作品與總結反應條件的影響形態特徵。首先,在我們成長的兩端的機制孿晶消極地是由於 O 終止被控表面的 (000 1) 飛機,這是不受保護,正如發現在其他類似的報導氧化鋅雙晶體的情況下作為添加劑的有機陰離子。最近獲得的 Cho 等人氧化鋅使用雙晶型抗壞血酸作為一種添加劑。[49]然而,他們的結構傾向于多晶矽和無孔而不是單水晶般和多孔。顯然,不擴散阿拉伯樹膠聚合物會調解更好地面向的附件留在 mesocrystal,而不是移動的它。一般來說,聚電解質封裝無機納米晶可以減弱將附加到彼此更好因為他們有更長的時間來搜索最好的外延適合與融合。在我們以前的工作,準備雙板上採用氧化鋅,明膠的形式。明膠具有兩個羧酸組和正電荷的胺組。因此,兩個(O 和鋅終止面臨) 極地飛機的adsorbACHTUNGTRENUNGed 由明膠。C 方向增長因而是更多抑制和雙板形式的結果。阿拉伯樹膠是一個有趣的中間案例;它是糖的混合物和糖蛋白表現出優異的性能,作為膠水和粘結劑對許多不同的表面。雖然它是高度帶負電荷的離子在中性 pH (支援資訊圖 S5),仍有一些胺類團體,以保護越來越多的 O 終止表面的雙刷某種程度上。最初,增長因而是仍然在板形式。然而,當 pH 值降在稍後階段 Oterminated表面變得缺乏保護,同時時間在中心原產的偶極子場變得較強的指導生長納米棒形式和折彎沿一個最後的垂直方向的欄位方向 (方案 2)。當添加強簡單電解質,偶極子大大篩選欄位,結構恢復為雙方案 1。雙刷 ZnO mesocrystals 的形成機理的示意圖。化學歐元 J.2012,18,16104 — — 16113 2012年威裡 VCH 出版社 GmbH & 有限公司 KGaA,Weinheim w
正在翻譯中..
結果 (繁體中文) 2:[復制]
復制成功!
HMT的水解形成了質子化物種
(CH 2)6N4H +,它有望被吸附在帶負
電荷的阿拉伯樹膠。然而,由於非常的
阿拉伯樹膠的低等電點,它仍基本上帶負
電荷的啟動雙層硝酸鋅氫氧化物
水合物相。隨後當地質子HMT是
能夠接受進一步水解生成氫氧化
根據顯示的反應氧化鋅的生長之前。
我們提出的用於形成的物理過程機制
雙刷的ZnO非晶的示於
方案1在溶液中,
Zn離子(方案1)與羥基反應, 它源於熱分解離子
的HMT [47]到形成兩種中間體納米顆粒
的尺寸範圍從3至5納米。其中最主要的是硝酸鋅
氫氧化物水合物Zn5ACHTUNGTRENUNG(NO 3)2(OH)8·2H2O)和
次要的是氫氧化鋅的Zn(OH)2(方案1 b)中。然後,
由阿拉伯膠介導的,納米顆粒聚集在一起
,以形成具有不平坦表面和厚度納米片
的約10nm(方案1 C)。聚合物介導的聚集
的ZnO已熱液下先前觀察
的條件。[48] 在此過程中,這些納米片自調整
其取向,以形成良好有序的結晶
相變之前納米片。
此後,雙層狀納米片與表面
直徑約200納米的大小進行表面重結晶
(方案1 e)所示。由於遠程內在的
氧化鋅納米片偶極場,二納米片具有相反的
兩極方向連接起來,抵消
利用全雙層納米片的電場
負電荷的阿拉伯樹膠作為中介層。在
這一階段,納米片將由調整它們的方向
小礦物橋樑的兩個相對的部分之間
的雙層盤。此外,
Zn5ACHTUNGTRENUNG(NO 3)2(OH)8·2H2O與偶極特性將堆疊的兩個表面上
發生相變之前雙納米片
(方案1四)。同時,儘管納米片
幾乎所有換算成ZnO,納米棒將形成於
層狀納米片。因此,尺寸和多層的厚度
納米片迅速增加,表面形態
非晶的兩側也從平面改變
到凹形(方案1 F)。多層氧化鋅納米片
上,整個非晶仍然保留了他們的擇優取向
,由於連接它們的小橋流水。
邊緣上非晶兩側的凹面將
提供一個生長部位吸引非晶中間體,
隨後通過形成在兩側ZnO納米棒的
(方案1克)。最後,進行了雙刷氧化鋅非晶
獲得。
最後,我們做與現有的作品一些比較
和總結對反應條件的影響
形態。首先,在我們的機構的生長末端
的孿晶是負
由於O形終止帶電
的(000?1)平面的表面,
這是保護較少,正如
在其他類似的報告發現
使用ZnO雙晶的情況下,
有機陰離子作為添加劑。
Cho等。
最近獲得的使用的ZnO雙晶型
抗壞血酸作為添加劑。[49]
但是,它們的結構
往往是多晶
和無孔,而不是
單晶狀和多孔的。
顯然,少擴散
聚合物阿拉伯樹膠調解
更好的面向連接
,並留在非晶而不是移動出
它。一般地,聚電解質封裝無機納米晶體
可以orientedly彼此附接好,因為
它們有較長的時間來搜索最佳的外延擬合
和融合。在我們以前的有關準備雙片工作
的ZnO形式,使用明膠。
明膠同時具有羧酸基團和帶正電荷的胺基。因此,這兩個
極面(O-和鋅封端面)都是
由明膠adsorbACHTUNGTRENUNGed。生長在c方向是因此更
抑制並導致在雙片形式。阿拉伯樹膠是
一種有趣的中間情況; 它是醣類的混合物
和糖蛋白表現出優異的性能作為
膠和粘合劑到許多不同的表面上。雖然它是
高度負在中性pH(支持信息的收費
圖S5)中,仍存在一些胺基來保護
雙刷的生長O形端接面
有所。最初,增長從而還在板的形式。
然而,
當pH值降至在稍後階段的Oterminated 表面變得較少保護,並在同一
時間的偶極場始發在中心變得
更強,以指導生長到納米棒的形式和彎曲
沿著磁場方向(方案2),以最終垂直方向。
當加入強電解質簡單,偶極
場大大篩選和結構恢復到雙軌
方案1.原理雙刷氧化鋅非晶的形成機制。
化學。歐元。J. 2012,18,16104 - 16113?2012 WILEY-VCH出版公司。KGaA公司,魏因海姆W¯¯ 偶極場大大篩選和結構恢復到雙軌方案1.原理雙刷氧化鋅非晶的形成機制。化學。歐元。J. 2012,18,16104 - 16113?2012 WILEY-VCH出版公司。KGaA公司,魏因海姆W¯¯ 偶極場大大篩選和結構恢復到雙軌方案1.原理雙刷氧化鋅非晶的形成機制。化學。歐元。J. 2012,18,16104 - 16113?2012 WILEY-VCH出版公司。KGaA公司,魏因海姆W¯¯
正在翻譯中..
結果 (繁體中文) 3:[復制]
復制成功!
水解的HMT形成質子化物種(CH2)6n4h +,這是預計將吸附在帶負阿拉伯阿拉伯阿拉伯膠。然而,因為非常低等電點的阿拉伯樹膠,基本上還是負的帶電啟動雙層硝酸鋅氫氧化物水合物的相。那地方是質子化的HMT能够進行進一步水解生成氫氧化物根據所示反應在氧化鋅生長之前。我們建議的物理過程形成機制雙刷的ZnO非晶顯示方案1。在溶液中,鋅離子(方案1)與羥基反應熱分解產生的離子HMT [ 47 ]形成兩種中間顆粒大小不等,從3到5納米。主要的是硝酸鋅水合氫氧化zn5achtungtrenung(NO3)2(OH)8·2H2O)和次要的是氫氧化鈉鋅(OH)2(方案1 B)。然後,由阿拉伯膠介導的納米粒子聚集在一起用表面凹凸不平,形成納米片的厚度約10納米(計畫1 C)。聚合物介導的聚集在水熱條件下觀察到了氧化鋅條件。[ 48 ]在這個過程中,這些納米片自調整形成有序晶體的取向在相變納米片。之後,雙表面層狀納米片直徑約200 nm的表面經歷了表面再結晶(計畫1)。由於長程內在ZnO納米片的偶極場,兩片相反偶極方向連接在一起取消整個雙層納米片利用電場帶負電荷的阿拉伯樹膠作為仲介層。在這一階段,納米片會調整自己的方向的兩個相對的部分之間的小型礦物橋雙層板。此外,zn5achtungtrenung(NO3)2(OH)8·2H2O與偶極特性將疊加在兩個表面上的雙片發生相變之前(計畫1天)。同時,而納米片幾乎全部轉化為氧化鋅,納米棒將形成層狀納米片。囙此,多層的尺寸和厚度納米盤的迅速新增,和表面形貌對非晶雙方也從平到凹(計畫1樓)。多層氧化鋅納米片在整個非晶仍然把他們的擇優取向由於連接他們的小橋。邊緣的凹表面上,雙方都會獲得提供一個吸引非晶中間體的生長場所,其次是兩側形成氧化鋅納米棒(計畫1克)。最後,雙刷ZnO非晶被獲得.最後,我們比較一些現有的作品並總結了反應條件對形態學.首先,在我們的機制雙晶體呈負指控由於氧(0001)平面的表面,這是不受保護的,因為是發現在其他類似的報導納米氧化鋅雙晶體有機陰離子作為添加劑。秋等。最近得到一個氧化鋅的雙晶體形式抗壞血酸作為添加劑[ 49 ]然而,他們的結構往往是多晶無孔不單晶狀和多孔性。顯然,擴散性越小阿拉伯聚合物阿拉伯膠將介導更好的面向連接的在非晶而不是移動了它。一般來說,聚電解質封裝的無機納米晶體能化重視對方更好因為他們有較長的時間來尋找最好的外延配合與融合。在我們以前的工作,準備雙板氧化鋅,明膠的形式使用。明膠既有羧酸酯基團和正電荷胺基。囙此,兩的極性平面(O和Zn終止面)adsorbachtungtrenunged明膠。在C方向的增長,囙此更多抑制和結果在雙板形式。阿拉伯樹膠一個有趣的案例中;它是一種混合糖表現出優异效能的糖蛋白膠水和粘合劑到許多不同的表面。雖然它是高負電荷在中性pH值(支持資訊圖5),還有一些氨基保護雙刷的氧表面生長有些。最初,增長,囙此仍然在板形式。然而,當pH值下降,在後期的oterminated表面變得更少的保護,並在相同的偶極場起源於中心的時間較强的引導生長納米棒形彎曲沿磁場方向(方案2)到最終垂直方向。當加入簡單的强電解質時,偶極場大大篩選和結構恢復到雙—方案1。雙刷的ZnO非晶形成機理示意圖。化學。歐元。J. 2012,1816104161132012威利–VCH出版社有限股份兩合公司,Weinheim
正在翻譯中..
 
其它語言
本翻譯工具支援: 世界語, 中文, 丹麥文, 亞塞拜然文, 亞美尼亞文, 伊博文, 俄文, 保加利亞文, 信德文, 偵測語言, 優魯巴文, 克林貢語, 克羅埃西亞文, 冰島文, 加泰羅尼亞文, 加里西亞文, 匈牙利文, 南非柯薩文, 南非祖魯文, 卡納達文, 印尼巽他文, 印尼文, 印度古哈拉地文, 印度文, 吉爾吉斯文, 哈薩克文, 喬治亞文, 土庫曼文, 土耳其文, 塔吉克文, 塞爾維亞文, 夏威夷文, 奇切瓦文, 威爾斯文, 孟加拉文, 宿霧文, 寮文, 尼泊爾文, 巴斯克文, 布爾文, 希伯來文, 希臘文, 帕施圖文, 庫德文, 弗利然文, 德文, 意第緒文, 愛沙尼亞文, 愛爾蘭文, 拉丁文, 拉脫維亞文, 挪威文, 捷克文, 斯洛伐克文, 斯洛維尼亞文, 斯瓦希里文, 旁遮普文, 日文, 歐利亞文 (奧里雅文), 毛利文, 法文, 波士尼亞文, 波斯文, 波蘭文, 泰文, 泰盧固文, 泰米爾文, 海地克里奧文, 烏克蘭文, 烏爾都文, 烏茲別克文, 爪哇文, 瑞典文, 瑟索托文, 白俄羅斯文, 盧安達文, 盧森堡文, 科西嘉文, 立陶宛文, 索馬里文, 紹納文, 維吾爾文, 緬甸文, 繁體中文, 羅馬尼亞文, 義大利文, 芬蘭文, 苗文, 英文, 荷蘭文, 菲律賓文, 葡萄牙文, 蒙古文, 薩摩亞文, 蘇格蘭的蓋爾文, 西班牙文, 豪沙文, 越南文, 錫蘭文, 阿姆哈拉文, 阿拉伯文, 阿爾巴尼亞文, 韃靼文, 韓文, 馬來文, 馬其頓文, 馬拉加斯文, 馬拉地文, 馬拉雅拉姆文, 馬耳他文, 高棉文, 等語言的翻譯.

Copyright ©2024 I Love Translation. All reserved.

E-mail: