waytotestclaimsorideasaboutagrouporpopulation.Givenobservationsoftrans的中文翻譯

waytotestclaimsorideasaboutagroupor

waytotestclaimsorideasaboutagrouporpopulation.
GivenobservationsoftransmissiondataratesubsetsΩ,we
participationΩinton+1subsets{R1,R2,...,Rn,Rc},
correspondingtopossibledataratesetsduetovaryingchannel
conditions,whilethe{Rc}representsdataratesetcausedby
covertcommunications.Thedetectionproblemisformulated
asfollows:
Hp=δ(D)=









H1normal
H2normal
...
Hnnormal
Hccovertchannel
(1)
Here,Hi,i=1,2,...ncorrespondtooneofNULLhy-
pothesis;thealternatehypothesisis{Hc}.Hpisthepredicted
hypothesis.Thechallengehereistofinddecisionruleso
thatthepredictionerrorisminimizedbetweenthepredicted
HpandHi,i=1,2,...nincludingHc.Discriticalvalue.
Wegrouptheoriginalobservationofdataratesetsintotwo
biggroups,arbitrarilylabeledAandB,whicharedifferent
withrespecttosomenumericalcharacteristicsX.InEq.(1),
Hi,i=1,2,...nisconsideredasgroupAandHcisgroup
B.Byanalyzingstatisticsfeatureoforiginaldataratesets,a
featuringvector,consideredasXisformed,andhypotheses
areformedaswell.Inthefollowingsectionwewilldiscuss
howtomapdifferentdataratesets{R1,R2,...,Rn,Rc}to
thecorrespondingHi,Hc,i=1,2,...n;thecriteriaDfor
makingadecision,andthetestprocedure.
C.Theproposeddetectionmodel
802.11a/b/g/nprotocolshavedifferentavailabledatarates
asshowninTableI.Byvaryingmodulationtypes,eachproto-
colallowsadevicechangeitsdataratetoaccommodateunsta-
blewirelessconditions.Rateadaptionisthedeterminationof
theoptimaldatatransmissionratemostappropriateforcurrent
wirelesschannelconditions.Itconsistsofassessingchannel
conditionsandaccordinglyadjustingthetransmissionrate.
Adetailedsurveyonrateadaptionalgorithmscanbefound
in[11].Itisverycommonforadevicetousedifferentdata
ratestotransmitdatainaWLAN,thoughthiscanbeutilized
byanattackertopasssecretmessage.However,justbylooking
atdifferentdataratesusedinaWLANwillnothelpusidentify
anyabnormalcase.Inthispaper,theprobabilitydistribution
oftransmissiondataratesRisproposedtocharacterizerate
diversityinaWLAN.Thischaracteristicsiscalculatedbased
onmeasurementsofdataratesoveracertainperiodoftime.
Thedistributionofdataratesrevealeitherunstablewireless
channelconditionsorapossiblecoverttimingchannel.To
characterizethedynamicfeatureofrateswitchinginaWLAN,
Afeaturevectorisproposedasfollows:
VF=[PR(1),PR(2),...PR(k)](2)
VFisakdimensionalvector,andeachdimensionrep-
resentsaprobabilitydistributionofdatarateRkassuming
therearekdifferentdataratesinaWLAN.Foraspecific
WLAN,notalldataratesareavailable.Inthatcase,missing
datarateisrepresentedby0.NowthestatedhypothesisHiin
Eq.(1)couldbeformedbyVF,representingapossibledata
ratedistributionscenario.EachhypothesisinEq.(1)should
beavectorandboldfaceletterswillbeusedforhypotheses
intheremainderofthispaper.Hicouldbetrainedthrough
realtrafficdata.Hcrepresentsratedistributionpatterncaused
bycovertchannels.Asecretmessageusuallyisnotencrypted
whenitiscarriedbycovertchannelandtheASCIIisencoded
directlybydifferentdatarates.ThehypothesisHcisformed
byletterfrequenciesorwordfrequencies.Letterfrequencies,
howevertendtovarybothbywriterorbysubject.Noexact
letterfrequencydistributionunderliesagivenlanguage,since
allwriterswriteslightlydifferently.Accurateaverageletter
frequenciescanonlybegleanedbyanalyzingalargeamountof
representativetext.Withtheavailabilityofmoderncomputing
andcollectionsoflargetextcorpora,suchcalculationsare
easilymade.TheletterfrequencyfromPavelMika’swebsite,
whichcitesRobertLewand’sCytologicalMathematics,is
adoptedinthispaper.Fig.2showsrelativeletterfrequency.
Arandomtextfileiscreatedwithletterdistributions
followingtheletterfrequencyshowninFig.2.Theselet-
tersarerepresentedbytheirASCIIcodes,whichgiveus
asequencea0sand1s.Dependingonavailabledatarates
inaWLAN,anattackermaypick4differentdatarates
suchasdataratesin802.11b[1,2,5.5,11]Mbpstocodea
secretmessage.Thereare4!=24possibleencodingschemes
toencode00,01,10,11.For8datarates,thenumberof
encodingschemescouldreach8!=40320.Forexample,
datarates1,2,5.5,11Mbpscouldencode00,01,10,11,re-
spectively,whichisoneofmanypossibleencodingschemes.
Thedistributionsofdataratescanthenbecalculatedbasedon
arandomlygeneratedtextmessage.ThusHcrepresentsrate
distributioncausedbycoverttimingchannelsusingdifferent
datarates.TogetaccurateestimationofHc,alargetext
ortheaverageofseveraltextscouldbeusedtoformHc.
FortheHypothesisHi,i=1,2,...n,experimentalmethodis
usedtocharacterizedifferentWLANscenarios.Nowweneed
toproposeacriteriauponwhichwedecidetheclaimbeing
testedbelongstowhichhypothesis.Ifthetestedclaimbelongs
toanyoneofHi,i=1,2,..,nhypothesis,itisanormal
WLANratedistributionscenarioanddoesnotcontainsecret
information;ifitfallsinHc,secretmessageisembedded
intransmissiondatarates.Thus,coverttimingchannelis
detected.Aruntimemonitorcollectssampledataratesfrom
aWLAN;theratedistributionisthencalculatedtoformHp,
whichisakdimensionalvector.Nowwecomparewhatwe
observeinHptowhatweexpectHi,i=1,2...n,Hcinterms
ofsimilarity.ThecriteriaissetbasedonwhichvectoramongHi,i=1,2...n,HcisthemostsimilaronetotheHp.TheEuclideandistanceisproposedtomeasuresimilarity:D(k)=????m
0/5000
原始語言: -
目標語言: -
結果 (中文) 1: [復制]
復制成功!
waytotestclaimsorideasaboutagrouporpopulation.GivenobservationsoftransmissiondataratesubsetsΩ,weparticipationΩinton+1subsets{R1,R2,...,Rn,Rc},correspondingtopossibledataratesetsduetovaryingchannelconditions,whilethe{Rc}representsdataratesetcausedbycovertcommunications.Thedetectionproblemisformulatedasfollows:Hp=δ(D)=⎧⎪⎪⎪⎨⎪⎪⎪⎩H1normalH2normal...HnnormalHccovertchannel(1)Here,Hi,i=1,2,...ncorrespondtooneofNULLhy-pothesis;thealternatehypothesisis{Hc}.Hpisthepredictedhypothesis.ThechallengehereistofinddecisionrulesothatthepredictionerrorisminimizedbetweenthepredictedHpandHi,i=1,2,...nincludingHc.Discriticalvalue.Wegrouptheoriginalobservationofdataratesetsintotwobiggroups,arbitrarilylabeledAandB,whicharedifferentwithrespecttosomenumericalcharacteristicsX.InEq.(1),Hi,i=1,2,...nisconsideredasgroupAandHcisgroupB.Byanalyzingstatisticsfeatureoforiginaldataratesets,afeaturingvector,consideredasXisformed,andhypothesesareformedaswell.Inthefollowingsectionwewilldiscusshowtomapdifferentdataratesets{R1,R2,...,Rn,Rc}tothecorrespondingHi,Hc,i=1,2,...n;thecriteriaDformakingadecision,andthetestprocedure.C.Theproposeddetectionmodel802.11a/b/g/nprotocolshavedifferentavailabledataratesasshowninTableI.Byvaryingmodulationtypes,eachproto-colallowsadevicechangeitsdataratetoaccommodateunsta-blewirelessconditions.Rateadaptionisthedeterminationoftheoptimaldatatransmissionratemostappropriateforcurrentwirelesschannelconditions.Itconsistsofassessingchannelconditionsandaccordinglyadjustingthetransmissionrate.Adetailedsurveyonrateadaptionalgorithmscanbefoundin[11].ItisverycommonforadevicetousedifferentdataratestotransmitdatainaWLAN,thoughthiscanbeutilizedbyanattackertopasssecretmessage.However,justbylookingatdifferentdataratesusedinaWLANwillnothelpusidentifyanyabnormalcase.Inthispaper,theprobabilitydistributionoftransmissiondataratesRisproposedtocharacterizeratediversityinaWLAN.Thischaracteristicsiscalculatedbasedonmeasurementsofdataratesoveracertainperiodoftime.Thedistributionofdataratesrevealeitherunstablewirelesschannelconditionsorapossiblecoverttimingchannel.TocharacterizethedynamicfeatureofrateswitchinginaWLAN,Afeaturevectorisproposedasfollows:VF=[PR(1),PR(2),...PR(k)](2)VFisakdimensionalvector,andeachdimensionrep-resentsaprobabilitydistributionofdatarateRkassumingtherearekdifferentdataratesinaWLAN.ForaspecificWLAN,notalldataratesareavailable.Inthatcase,missingdatarateisrepresentedby0.NowthestatedhypothesisHiinEq.(1)couldbeformedbyVF,representingapossibledataratedistributionscenario.EachhypothesisinEq.(1)shouldbeavectorandboldfaceletterswillbeusedforhypothesesintheremainderofthispaper.Hicouldbetrainedthroughrealtrafficdata.Hcrepresentsratedistributionpatterncausedbycovertchannels.AsecretmessageusuallyisnotencryptedwhenitiscarriedbycovertchannelandtheASCIIisencodeddirectlybydifferentdatarates.ThehypothesisHcisformedbyletterfrequenciesorwordfrequencies.Letterfrequencies,howevertendtovarybothbywriterorbysubject.Noexactletterfrequencydistributionunderliesagivenlanguage,sinceallwriterswriteslightlydifferently.Accurateaverageletterfrequenciescanonlybegleanedbyanalyzingalargeamountofrepresentativetext.Withtheavailabilityofmoderncomputingandcollectionsoflargetextcorpora,suchcalculationsareeasilymade.TheletterfrequencyfromPavelMika’swebsite,whichcitesRobertLewand’sCytologicalMathematics,isadoptedinthispaper.Fig.2showsrelativeletterfrequency.ArandomtextfileiscreatedwithletterdistributionsfollowingtheletterfrequencyshowninFig.2.Theselet-tersarerepresentedbytheirASCIIcodes,whichgiveusasequencea0sand1s.DependingonavailabledataratesinaWLAN,anattackermaypick4differentdataratessuchasdataratesin802.11b[1,2,5.5,11]Mbpstocodeasecretmessage.Thereare4!=24possibleencodingschemestoencode00,01,10,11.For8datarates,thenumberofencodingschemescouldreach8!=40320.Forexample,datarates1,2,5.5,11Mbpscouldencode00,01,10,11,re-spectively,whichisoneofmanypossibleencodingschemes.Thedistributionsofdataratescanthenbecalculatedbasedonarandomlygeneratedtextmessage.ThusHcrepresentsratedistributioncausedbycoverttimingchannelsusingdifferentdatarates.TogetaccurateestimationofHc,alargetextortheaverageofseveraltextscouldbeusedtoformHc.FortheHypothesisHi,i=1,2,...n,experimentalmethodisusedtocharacterizedifferentWLANscenarios.Nowweneedtoproposeacriteriauponwhichwedecidetheclaimbeingtestedbelongstowhichhypothesis.IfthetestedclaimbelongstoanyoneofHi,i=1,2,..,nhypothesis,itisanormalWLANratedistributionscenarioanddoesnotcontainsecretinformation;ifitfallsinHc,secretmessageisembeddedintransmissiondatarates.Thus,coverttimingchannelisdetected.AruntimemonitorcollectssampledataratesfromaWLAN;theratedistributionisthencalculatedtoformHp,whichisakdimensionalvector.NowwecomparewhatweobserveinHptowhatweexpectHi,i=1,2...n,Hcintermsofsimilarity.ThecriteriaissetbasedonwhichvectoramongHi,i=1,2...n,HcisthemostsimilaronetotheHp.TheEuclideandistanceisproposedtomeasuresimilarity:D(k)=????m
正在翻譯中..
結果 (中文) 3:[復制]
復制成功!
waytotestclaimsorideasaboutagrouporpopulation。givenobservationsoftransmissiondataratesubsetsΩ,我们参与该Ω+ 1subsets { R1,R2,…,Rn、RC },correspondingtopossibledataratesetsduetovaryingchannel条件,而钢筋混凝土representsdataratesetcausedby { }covertcommunications。thedetectionproblemisformulated如下:惠普=δ(D)=⎧⎪⎪⎪⎨⎪⎪⎪⎩h1normalh2normal…hnnormalhccovertchannel(1)在这里,嗨,i = 1,2,…ncorrespondtooneofnullhy—假设;thealternatehypothesisis { } hpisthepredicted HC。thechallengehereistofinddecisionruleso假说。thatthepredictionerrorisminimizedbetweenthepredictedHpandHi,i = 1,2,…nincludinghc.discriticalvalue。wegrouptheoriginalobservationofdataratesetsintotwo大,arbitrarilylabeledaandb,whicharedifferentwithrespecttosomenumericalcharacteristicsx。不等式(1),嗨,我nisconsideredasgroupaandhcisgroup = 1,2,…B. Byanalyzingstatisticsfeatureoforiginaldataratesets,一个featuringvector,consideredasxisformed,与研究假设areformedaswell。inthefollowingsectionwewilldiscusshowtomapdifferentdataratesets { R1,R2,…,Rn、RC }来thecorrespondinghi,HC,i = 1,2,…n;thecriteriadformakingadecision,andthetestprocedure。C. theproposeddetectionmodel802.11a/b/g/nprotocolshavedifferentavailabledataratesByvaryingmodulationtypes,eachproto asshownintablei—colallowsadevicechangeitsdataratetoaccommodateunsta—blewirelessconditions。rateadaptionisthedeterminationoftheoptimaldatatransmissionratemostappropriateforcurrentwirelesschannelconditions。itconsistsofassessingchannelconditionsandaccordinglyadjustingthetransmissionrate。adetailedsurveyonrateadaptionalgorithmscanbefound在[ 11 ]。itisverycommonforadevicetousedifferentdataratestotransmitdatainawlan,thoughthiscanbeutilizedbyanattackertopasssecretmessage。然而,justbylookingatdifferentdataratesusedinawlanwillnothelpusidentifyanyabnormalcase。本文theprobabilitydistributionoftransmissiondataratesrisproposedtocharacterizeratediversityinawlan。thischaracteristicsiscalculatedbasedonmeasurementsofdataratesoveracertainperiodoftime。thedistributionofdataratesrevealeitherunstablewirelesschannelconditionsorapossiblecoverttimingchannel,characterizethedynamicfeatureofrateswitchinginawlan,Afeaturevectorisproposedasfollows:VF = [ PR(1),PR(2),…PR(K)](2)vfisakdimensionalvector,andeachdimensionrep—resentsaprobabilitydistributionofdataraterkassumingtherearekdifferentdataratesinawlan。foraspecific无线局域网,notalldataratesareavailable Inthatcase失踪。datarateisrepresentedby0.nowthestatedhypothesishiinEq.(1)couldbeformedbyvf,representingapossibledataratedistributionscenario。eachhypothesisineq。(1)应beavectorandboldfaceletterswillbeusedforhypothesesintheremainderofthispaper。hicouldbetrainedthroughrealtrafficdata。hcrepresentsratedistributionpatterncausedbycovertchannels。asecretmessageusuallyisnotencryptedwhenitiscarriedbycovertchannelandtheasciiisencodeddirectlybydifferentdatarates.thehypothesishcisformedbyletterfrequenciesorwordfrequencies。letterfrequencies,l howevertendtovarybothbywriterorbysubject。letterfrequencydistributionunderliesagivenlanguage,自allwriterswriteslightlydifferently。accurateaverageletterfrequenciescanonlybegleanedbyanalyzingalargeamountofrepresentativetext。withtheavailabilityofmoderncomputingandcollectionsoflargetextcorpora,suchcalculationsare很容易地就交上了。theletterfrequencyfrompavelmika"swebsite,whichcitesrobertlewand"scytologicalmathematics,是adoptedinthispaper.fig.2showsrelativeletterfrequency。arandomtextfileiscreatedwithletterdistributionsfollowingtheletterfrequencyshowninfig.2.theselet—tersarerepresentedbytheirasciicodes,whichgiveusasequencea0sand1s。dependingonavailabledataratesinawlan,anattackermaypick4differentdataratessuchasdataratesin802.11b [ 1,2,5.5,11 ] mbpstocodeasecretmessage.thereare4!= 24possibleencodingschemestoencode00,01,10,11 for8datarates,数量。encodingschemescouldreach8!= 40320.forexample,datarates1,2,5.5,11mbpscouldencode00,01,10,11,重新—性,whichisoneofmanypossibleencodingschemes。thedistributionsofdataratescanthenbecalculatedbasedonarandomlygeneratedtextmessage.thushcrepresentsratedistributioncausedbycoverttimingchannelsusingdifferentTogetaccurateestimationofHc,alargetext数据速率。ortheaverageofseveraltextscouldbeusedtoformhc。FortheHypothesisHi,i = 1,2,…N,experimentalmethodisusedtocharacterizedifferentwlanscenarios。nowweneedtoproposeacriteriauponwhichwedecidetheclaimbeingtestedbelongstowhichhypothesis。ifthetestedclaimbelongstoanyoneofhi,i = 1,2,..,nhypothesis,itisanormalwlanratedistributionscenarioanddoesnotcontainsecret信息;ifitfallsinhc,secretmessageisembeddedintransmissiondatarates。因此,coverttimingchannelisaruntimemonitorcollectssampledataratesfrom检测。theratedistributionisthencalculatedtoformhp无线,whichisakdimensionalvector。nowwecomparewhatweobserveinhptowhatweexpecthi,i = 1,2…n,hcinterms相似性。ThecriteriaissetbasedonwhichvectoramongHi,i = 1,2…n,HcisthemostsimilaronetotheHp.TheEuclideandistanceisproposedtomeasuresi
正在翻譯中..
 
其它語言
本翻譯工具支援: 世界語, 中文, 丹麥文, 亞塞拜然文, 亞美尼亞文, 伊博文, 俄文, 保加利亞文, 信德文, 偵測語言, 優魯巴文, 克林貢語, 克羅埃西亞文, 冰島文, 加泰羅尼亞文, 加里西亞文, 匈牙利文, 南非柯薩文, 南非祖魯文, 卡納達文, 印尼巽他文, 印尼文, 印度古哈拉地文, 印度文, 吉爾吉斯文, 哈薩克文, 喬治亞文, 土庫曼文, 土耳其文, 塔吉克文, 塞爾維亞文, 夏威夷文, 奇切瓦文, 威爾斯文, 孟加拉文, 宿霧文, 寮文, 尼泊爾文, 巴斯克文, 布爾文, 希伯來文, 希臘文, 帕施圖文, 庫德文, 弗利然文, 德文, 意第緒文, 愛沙尼亞文, 愛爾蘭文, 拉丁文, 拉脫維亞文, 挪威文, 捷克文, 斯洛伐克文, 斯洛維尼亞文, 斯瓦希里文, 旁遮普文, 日文, 歐利亞文 (奧里雅文), 毛利文, 法文, 波士尼亞文, 波斯文, 波蘭文, 泰文, 泰盧固文, 泰米爾文, 海地克里奧文, 烏克蘭文, 烏爾都文, 烏茲別克文, 爪哇文, 瑞典文, 瑟索托文, 白俄羅斯文, 盧安達文, 盧森堡文, 科西嘉文, 立陶宛文, 索馬里文, 紹納文, 維吾爾文, 緬甸文, 繁體中文, 羅馬尼亞文, 義大利文, 芬蘭文, 苗文, 英文, 荷蘭文, 菲律賓文, 葡萄牙文, 蒙古文, 薩摩亞文, 蘇格蘭的蓋爾文, 西班牙文, 豪沙文, 越南文, 錫蘭文, 阿姆哈拉文, 阿拉伯文, 阿爾巴尼亞文, 韃靼文, 韓文, 馬來文, 馬其頓文, 馬拉加斯文, 馬拉地文, 馬拉雅拉姆文, 馬耳他文, 高棉文, 等語言的翻譯.

Copyright ©2025 I Love Translation. All reserved.

E-mail: