100:00:02,840 --> 00:00:07,040If you’ve been ignoring neural nets cuz 的中文翻譯

100:00:02,840 --> 00:00:07,040If yo

1
00:00:02,840 --> 00:00:07,040
If you’ve been ignoring neural nets cuz you think they’re too hard to understand

2
00:00:07,040 --> 00:00:11,040
or you think you don’t need them…boy do I have a treat for you!

3
00:00:11,040 --> 00:00:16,080
In this video you’ll learn about neural nets without any of the math or code –

4
00:00:16,080 --> 00:00:19,200
just an intro to what they are and how they work.

5
00:00:19,200 --> 00:00:23,280
My hope is that you’ll get an idea for why they’re such an important tool.

6
00:00:23,280 --> 00:00:24,560
Let’s get started.

7
00:00:24,560 --> 00:00:25,920


8
00:00:25,920 --> 00:00:30,360
The first thing you need to know is that deep learning is about neural networks.

9
00:00:30,360 --> 00:00:34,360
The structure of a neural network is like any other kind of network;

10
00:00:34,360 --> 00:00:38,160
there is an interconnected web of nodes, which are called neurons,

11
00:00:38,160 --> 00:00:40,560
and the edges that join them together.

12
00:00:40,560 --> 00:00:44,500
A neural network's main function is to receive a set of inputs,

13
00:00:44,500 --> 00:00:47,580
perform progressively complex calculations,

14
00:00:47,580 --> 00:00:50,380
and then use the output to solve a problem.

15
00:00:50,380 --> 00:00:53,800
Neural networks are used for lots of different applications,

16
00:00:53,800 --> 00:00:57,140
but in this series we will focus on classification.

17
00:00:57,140 --> 00:01:01,520
If you wanna learn about neural nets in a bit more detail, including the math,

18
00:01:01,520 --> 00:01:08,360
my two favourite resources are Michael Nielsen's book, and Andrew Ng's class.

19
00:01:08,360 --> 00:01:15,100
Before we talk more about neural networks, I’m gonna give you a quick overview of the problem of classification.

20
00:01:15,100 --> 00:01:19,000
Classification is the process of categorizing a group of objects,

21
00:01:19,000 --> 00:01:23,160
while only using some basic data features that describe them.

22
00:01:23,160 --> 00:01:26,040
There are lots of classifiers available today -

23
00:01:26,040 --> 00:01:32,340
like Logistic Regression, Support Vector Machines, Naive Bayes, and of course, neural networks.

24
00:01:32,340 --> 00:01:38,240
The firing of a classifier, or activation as its commonly called, produces a score.

25
00:01:38,240 --> 00:01:42,400
For example, say you needed to predict if a patient is sick or healthy,

26
00:01:42,400 --> 00:01:46,720
and all you have are their height, weight, and body temperature.

27
00:01:46,720 --> 00:01:53,240
The classifier would receive this data about the patient, process it, and fire out a confidence score.

28
00:01:53,240 --> 00:02:01,900
A high score would mean a high confidence that the patient is sick, and a low score would suggest that they are healthy.

29
00:02:01,900 --> 00:02:05,960
Neural nets are used for classification tasks where an object can fall

30
00:02:05,960 --> 00:02:09,080
into one of at least two different categories.

31
00:02:09,080 --> 00:02:11,820
Unlike other networks like a social network,

32
00:02:11,820 --> 00:02:15,120
a neural network is highly structured and comes in layers.

33
00:02:15,120 --> 00:02:17,300
The first layer is the input layer,

34
00:02:17,300 --> 00:02:19,320
the final layer is the output layer,

35
00:02:19,320 --> 00:02:23,040
and all layers in between are referred to as hidden layers.

36
00:02:23,040 --> 00:02:28,560
A neural net can be viewed as the result of spinning classifiers together in a layered web.

37
00:02:28,560 --> 00:02:33,920
This is because each node in the hidden and output layers has its own classifier.

38
00:02:33,920 --> 00:02:35,760
Take that node for example -

39
00:02:35,760 --> 00:02:39,440
it gets its inputs from the input layer, and activates.

40
00:02:39,440 --> 00:02:45,040
Its score is then passed on as input to the next hidden layer for further activation.

41
00:02:45,040 --> 00:02:45,940
So,

42
00:02:45,940 --> 00:02:50,100
let’s see how this plays out end to end across the entire network.

43
00:02:50,100 --> 00:02:53,020
A set of inputs is passed to the first hidden layer,

44
00:02:53,020 --> 00:02:56,720
the activations from that layer are passed to the next layer and so on,

45
00:02:56,720 --> 00:02:58,960
until you reach the output layer,

46
00:02:58,960 --> 00:03:04,480
where the results of the classification are determined by the scores at each node.

47
00:03:04,480 --> 00:03:07,120
This happens for each set of inputs.

48
00:03:07,120 --> 00:03:09,920
Here's another one...

49
00:03:09,920 --> 00:03:11,460
like so.

50
00:03:11,460 --> 00:03:16,500
This series of events starting from the input where each activation is sent to the next layer,

51
00:03:16,500 --> 00:03:18,840
and then the next, a
0/5000
原始語言: -
目標語言: -
結果 (中文) 1: [復制]
復制成功!
100:00:02,840--> 00:00:07,040如果你忽略的神经网因为你觉得它们太难理解200:00:07,040--> 00:00:11,040或者你认为你不需要他们...男孩做我有治疗给你 !300:00:11,040--> 00:00:16,080在这个视频中,您将了解到没有任何的数学或代码 — — 神经网络400:00:16,080--> 00:00:19,200只是它们是什么以及它们是如何工作简介。500:00:19,200--> 00:00:23,280我是希望你会明白了,为他们为什么这样一种重要的工具。600:00:23,280--> 00:00:24,560我们开始吧。700:00:24,560--> 00:00:25,920 800:00:25,920--> 00:00:30,360你需要知道的第一件事是深入学习神经网络。900:00:30,360--> 00:00:34,360神经网络的结构就像任何其他类型的网络;1000:00:34,360--> 00:00:38,160那里是相互的交织的节点上,这被称为神经元,1100:00:38,160--> 00:00:40,560和他们在一起的边缘。1200:00:40,560--> 00:00:44,500一种神经网络的主要功能是接收一组输入,1300:00:44,500--> 00:00:47,580执行逐步复杂的计算,1400:00:47,580--> 00:00:50,380然后使用输出来解决问题。1500:00:50,380--> 00:00:53,800神经网络用于很多不同的应用程序,1600:00:53,800--> 00:00:57,140但在本系列中我们将集中在分类。1700:00:57 140--> 00:01:01,520如果你想要了解神经网的更多细节,包括数学,1800:01:01,520--> 00:01:08,360我最喜欢的两个资源是迈克尔 · 尼尔森书和 Andrew Ng 类。1900:01:08,360--> 00:01:15,100我们讨论更多关于神经网络之前,我要给你的分类问题的快速概览。2000:01:15,100--> 00:01:19,000分类是对一组对象,进行分类的过程2100:01:19,000--> 00:01:23,160同时只使用描述他们一些基本的数据特性。2200:01:23,160--> 00:01:26,040现在有了许多的量词可用-2300:01:26,040--> 00:01:32,340如 Logistic 回归分析,支持向量机,朴素贝叶斯和当然,神经网络。2400:01:32,340--> 00:01:38,240射击的分类器或作为其俗称,激活产生一个分数。2500:01:38,240--> 00:01:42,400例如,假设您需要预测是否病人是生病或是健康、2600:01:42,400--> 00:01:46,720和所有你的身高,体重和身体的温度。2700:01:46,720--> 00:01:53,240分类器将收到关于病人的资料、 处理,并火出置信度得分。2800:01:53,240--> 00:02:01,900很高的分数将意味着病人有病,和很低的分数会建议他们健康高置信度。2900:02:01,900--> 00:02:05,960神经网络用于分类任务对象可以落在哪里3000:02:05,960--> 00:02:09,080至少两个不同的类别之一。3100:02:09,080--> 00:02:11,820与其他网络像一个社交网络,不同3200:02:11,820--> 00:02:15,120神经网络高度结构化和图层。3300:02:15,120--> 00:02:17,300第一层是输入的层,3400:02:17,300--> 00:02:19,320最后一层是输出层,3500:02:19,320--> 00:02:23,040和之间的所有图层被称为隐藏的图层。3600:02:23,040--> 00:02:28,560一个神经网络可以看作纺分类器的结果一起在分层的 web。3700:02:28,560--> 00:02:33,920这是因为在隐藏和输出的图层中的每个节点有其自己的分类器。3800:02:33,920--> 00:02:35,760以该节点为例 — —3900:02:35,760--> 00:02:39,440从输入层,获取其输入,并激活。4000:02:39,440--> 00:02:45,040其得分是然后作为输入传递给下一个隐藏层进一步激活。4100:02:45,040--> 00:02:45,940所以,4200:02:45,940--> 00:02:50,100让我们看看如何这扮演了端到端在整个网络。4300:02:50,100--> 00:02:53,020一组输入传递给第一隐藏层,4400:02:53,020--> 00:02:56,720从该图层激活被传递到下一层,等等4500:02:56,720--> 00:02:58,960直到你到达输出层,4600:02:58,960--> 00:03:04,480在分类的结果由在每个节点的分数决定。4700:03:04,480--> 00:03:07,120每个输入集的出现这种情况。4800:03:07,120--> 00:03:09,920这里是另一个...4900:03:09,920--> 00:03:11,460就像这样。5000:03:11,460--> 00:03:16,500这一系列的事件从输入开始到下一层,发送每个激活的位置5100:03:16,500--> 00:03:18,840然后下一步,
正在翻譯中..
結果 (中文) 3:[復制]
復制成功!
102840 00:00:00:00 - >:07040如果你认为你已经ignoring神经网队太硬,因为他们了解207040 00:00:00:00 - >:11040或者你认为你不...boy need them for You have a给你治疗。311040 00:00:00:00 - >:16080在这个视频你learn about without any of the数学神经网队或队列。416080 00:00:00:00 - >:19200只是什么是安了他们和他们的工作技能。500:00:00:00 - > 19200:23280我希望你知道is that get an an important for为什么他们这样的工具。623280 00:00:00:00 - >:24560让我们开始。724560 00:00:00:00 - >:259208::00 00 00 00 25920—>::30360第一件事,你知道the need to is that is about深学习神经网络。930360 00:00:00:00 - >:34360神经网络结构of a kind of network is like any other;1034360 00:00:00:00 - >:38160there is an interconnected Web of which are called nodes,神经元,1138160 00:00:00:00 - >:40560join them,and the边在一起。1240560 00:00:00:00 - >:44500在main函数的神经network' to receive is of a集输入,1344500 00:00:00:00 - >:47580progressively做复杂的计算。1447580 00:00:00:00 - >:50380然后使用to the输出问题的解决。1550380 00:00:00:00 - >:800神经网络是used for很多of different applications,16::00 00 00 00 800—>::57140但在这个系列我们将重点分类。1700:00:00 - > 01 57140::01520如果你想learn about detail位神经网队在黑莓,including the Math,1801520::00 01 01 00 - >::08360我的两nielsen'图书资源的宠儿是迈克尔和安德鲁,ng' S级。1908360::00 01 01 00 - >::15 100在我们谈话关于神经网络的黑莓,你快给我裙子overview of the of分类问题。20::15 100 00 01 01 00 - >::19000categorizing is the process of Classification of a组对象,2100:00 - > 01:19000 23160:01:while using only that describe them some basic features的日期。2223160::00 01 01 00 - >::26040there are of available today - classifiers地段2326040::00 01 01 00 - >::32340Logistic回归支持向量机类,天真贝叶斯,神经网络,和大学课程,。2432340::00 01 01 00 - >::38240the烧of a as its commonly分类器,或所谓的活化,在produces评分。2538240::00 01 01 00 - >::42 400for example,if You needed to say is predict病人生病或健康,26::00 01 01 00 42 400—>::46720你已经是他们的身高和体重,体,和温度。2746720::00 01 01 00 - >::53240分类器会receive this about the process the病人日,恩,与火了信心评分。2800:00 - > 01:53240发现自己::02我在高高的信心评分均值that is the病人生病,蓝晶石和低分数,他们会是健康的。2902 00:00 - >:发现自己::05960 02神经分类任务在网队are used for an object can…3005960 02 00:00 - >:::09080 02into one of至少两个不同的分类。3109080 02 00:00 - >:::11820 02像其他的社交网络于,3202 00:00 - >::11820呢02在神经网络的结构和高度,是在层。33::02 00 00 02呢——>::不the first is the层输入层、3402 00:00 - >::不:19320 02is the the最终层输出层,3502 00:00 - >::19320:23040 02在所有的层和隐层之间are as to。3623040 02 00:00 - >:::28560 02神经网络在can be viewed as the result of a Web层classifiers纺在一起。3728560 02 00:00 - >:::33920 02这是因为茶叶中的每个节点输出层和隐有自己的分类器。3833920 02 00:00 - >:::35760 02take that for example -节点3935760 02 00:00 - >:::39440 02它从输入其输入层,和activates。4039440 02 00:00 - >:::45040 02它是由当时的输入值passed as to the next for further隐层激活。4145040 02 00:00 - >:::45940 02我知道,42::45940 02 00 00 02—>::50让我们看到了本次how the全部在网络端到端。4300:00 - > 50 02:::53020 02在集合的输入passed of is to the第一隐层,4453020 02 00:00 - >:::56720 02激活层passed from that are the next to the层在线和我知道,4556720 02 00:00 - >:::58960 02直到你达到在输出层。4658960 02 00:00 - >:::04480 03where the results of the Classification by the scores at each是矛盾的节点。4704480 03 00:00 - >:::07120 03for each of this能投入集。48::07120 03 00 00 03—>::你知道,对吧这是另一个…4903 00:00 - >::你知道,对吧11460 03:我知道。5011460 03 00:00 - >:::16500 03Starting from the events of this series is sent to each激活输入在下一层,5116500 03 00:00 - >:::18840 03然后我在the next,
正在翻譯中..
 
其它語言
本翻譯工具支援: 世界語, 中文, 丹麥文, 亞塞拜然文, 亞美尼亞文, 伊博文, 俄文, 保加利亞文, 信德文, 偵測語言, 優魯巴文, 克林貢語, 克羅埃西亞文, 冰島文, 加泰羅尼亞文, 加里西亞文, 匈牙利文, 南非柯薩文, 南非祖魯文, 卡納達文, 印尼巽他文, 印尼文, 印度古哈拉地文, 印度文, 吉爾吉斯文, 哈薩克文, 喬治亞文, 土庫曼文, 土耳其文, 塔吉克文, 塞爾維亞文, 夏威夷文, 奇切瓦文, 威爾斯文, 孟加拉文, 宿霧文, 寮文, 尼泊爾文, 巴斯克文, 布爾文, 希伯來文, 希臘文, 帕施圖文, 庫德文, 弗利然文, 德文, 意第緒文, 愛沙尼亞文, 愛爾蘭文, 拉丁文, 拉脫維亞文, 挪威文, 捷克文, 斯洛伐克文, 斯洛維尼亞文, 斯瓦希里文, 旁遮普文, 日文, 歐利亞文 (奧里雅文), 毛利文, 法文, 波士尼亞文, 波斯文, 波蘭文, 泰文, 泰盧固文, 泰米爾文, 海地克里奧文, 烏克蘭文, 烏爾都文, 烏茲別克文, 爪哇文, 瑞典文, 瑟索托文, 白俄羅斯文, 盧安達文, 盧森堡文, 科西嘉文, 立陶宛文, 索馬里文, 紹納文, 維吾爾文, 緬甸文, 繁體中文, 羅馬尼亞文, 義大利文, 芬蘭文, 苗文, 英文, 荷蘭文, 菲律賓文, 葡萄牙文, 蒙古文, 薩摩亞文, 蘇格蘭的蓋爾文, 西班牙文, 豪沙文, 越南文, 錫蘭文, 阿姆哈拉文, 阿拉伯文, 阿爾巴尼亞文, 韃靼文, 韓文, 馬來文, 馬其頓文, 馬拉加斯文, 馬拉地文, 馬拉雅拉姆文, 馬耳他文, 高棉文, 等語言的翻譯.

Copyright ©2024 I Love Translation. All reserved.

E-mail: