For all of the models, the major failure mode of the walls was overtur的繁體中文翻譯

For all of the models, the major fa

For all of the models, the major failure mode of the walls was overturning as shown
in Figure 1. It is seen from Figure 6 that the outward displacement measured by displacement
transducer D1 near the bottom of the reinforced soil, Type 1 wall facing, was
much smaller than that near the top of the facing measured by displacement transducer,
D3. This indicates that the transitional component of the facing displacement was much
smaller than its rotational component. It should be also noted that the subsoil immediately
in front of the facing suffered a slight heaving, as measured by displacement transducer
D4, which is possibly due to the occurrence of bearing capacity failure in the subsoil
below the facing.
In order to compare the relative stability of different wall types, the observed critical
accelerations were defined as the amplitude of the base acceleration (measured by accelerometer
A11 in Figure 6) in the active state (corresponding to negative acceleration
values in Figure 6) when the outward displacement at the top of the facing reached 5%
of the total wall height (approximately 25 mm). Note that, after the outward displacement
at the top of the facing exceeded 5% of the total wall height, the displacement began
to increase in an uncontrollable manner as was typically demonstrated by displacement
transducer D3 in Figure 6.
In Figure 14, the observed critical seismic acceleration coefficients, kh-cr(obs) , are
compared with the predicted critical seismic acceleration coefficients, kh-cr(cal) , which
resulted in a factor of safety of unity against overturning for δ = 3/4φ. For this comparison,
accelerations (see Table 1 for the observed critical accelerations) were converted
to seismic coefficients by using Equation 1.
For the cantilever-type, leaning-type, and gravity-type model walls, the observed values
were almost equal to or smaller than the predicted values against overturning. The
relative difference was larger in the order of the gravity-type, leaning-type, and cantilever-type
walls. The smaller observed critical seismic coefficient for the gravity-type
and leaning-type walls may be related to the inference that, as mentioned in Section 3,
the interface friction angle δw activated between the backfill and the wall facing was
smaller than the interface friction angle activated along the virtually vertical back face
within the backfill of the cantilever-type wall. On the other hand, the observed value
was slightly larger than the predicted value for the reinforced soil, Type 1 model wall,
and noticeably larger for the reinforced soil, Type 2 model wall.
The larger observed critical seismic coefficients for the reinforced-soil walls may be
due to the difference in the location of center of rotation (Section 3); i.e. the center of
rotation moves away from the wall face into the backfill after the bearing capacity failure
of the subsoil below the facing in the case of the gravity-type, leaning-type, and
cantilever-type walls. The distance of the same point of rotation from the back of the
wall is less in the case of the reinforced soil walls due to the flexibility of the backfill.
0/5000
原始語言: -
目標語言: -
結果 (繁體中文) 1: [復制]
復制成功!
為所有的模型,牆上的主要失效模式傾覆如圖所示在圖 1 中。它是由位移從向外位移測量的圖 6換能器 D1 的加筋土,面向,類型 1 牆底部附近是遠小於由位移感應器測量面臨的頂部附近D3。這表明,過渡元件面臨流離失所的多小於其旋轉元件。還應指出,立即底土在面臨遭受輕微脹,如由位移感應器測量D4,可能是由於在底土軸承能力失效的發生面臨的下面。為了比較不同的牆體類型,觀察關鍵的相對穩定性加速度被定義為基地的加速度 (加速度計的測量振幅圖 6 中的 A11) 處於活動狀態 (對應負加速度圖 6 中的值) 時面臨的頂部向外位移達到 5%總牆高度 (大約 25 毫米)。注意到,向外移位後面對超過 5%的總牆高度頂部,位移開始在無法控制的方式增加了通常所示位移換能器 D3 在圖 6 中。在圖 14 中,觀察到臨界地震加速度係數,kh-cr(obs),是compared with the predicted critical seismic acceleration coefficients, kh-cr(cal) , whichresulted in a factor of safety of unity against overturning for δ = 3/4φ. For this comparison,accelerations (see Table 1 for the observed critical accelerations) were convertedto seismic coefficients by using Equation 1.For the cantilever-type, leaning-type, and gravity-type model walls, the observed valueswere almost equal to or smaller than the predicted values against overturning. Therelative difference was larger in the order of the gravity-type, leaning-type, and cantilever-typewalls. The smaller observed critical seismic coefficient for the gravity-typeand leaning-type walls may be related to the inference that, as mentioned in Section 3,the interface friction angle δw activated between the backfill and the wall facing wassmaller than the interface friction angle activated along the virtually vertical back facewithin the backfill of the cantilever-type wall. On the other hand, the observed valuewas slightly larger than the predicted value for the reinforced soil, Type 1 model wall,and noticeably larger for the reinforced soil, Type 2 model wall.The larger observed critical seismic coefficients for the reinforced-soil walls may bedue to the difference in the location of center of rotation (Section 3); i.e. the center ofrotation moves away from the wall face into the backfill after the bearing capacity failureof the subsoil below the facing in the case of the gravity-type, leaning-type, andcantilever-type walls. The distance of the same point of rotation from the back of thewall is less in the case of the reinforced soil walls due to the flexibility of the backfill.
正在翻譯中..
結果 (繁體中文) 2:[復制]
復制成功!
對於所有的車型,牆壁的主要失效模式是傾覆所示
圖1,從圖6,通過位移測量的向外移動見過
傳感器D1附近的加筋土的底部,1型壁的面對,是
比附近位移傳感器,測定面的頂部小得多
D3。這表明,對向位移的過渡成分是多
比其轉動分量小。還應當指出的是,底土立即
在的面對遭受輕微的起伏,由位移傳感器測得的前
D4,這可能是由於在底土承載力故障的發生
的面的下方。
為了相對於比較不同牆類型的穩定性,所觀察到的臨界
加速度被定義為基加速度的幅度(由加速度計測得的
在活動狀態A11圖6)(對應於負的加速度
值在圖6中),當在頂部的向外位移面向達到5%
的總牆高(約25毫米)的。需要注意的是,該向外位移之後
在總壁高度的朝向超過5%的頂部,位移開始
在無法控制的方式增加,因為典型地由位移證明
傳感器D3於圖6
在圖14中,觀察到的臨界地震加速度係數,KH-CR(OBS),都
與預測臨界地震加速度係數相比,KH-CR(CAL),其中
導致統一安全因數抗傾覆對於δ= 3 /4φ。對於這種比較,
加速度(見表1所觀察到的臨界加速度)轉化
,通過使用等式1到地震係數
為懸臂式,傾斜式,和重力式模型壁,所觀察到的值
幾乎等於或比抗傾覆的預測值較小。所述
相對差異是在重力式,傾斜式,和懸臂式的順序增大
的壁。為重力型的小觀察臨界地震係數
和傾斜型壁可以進行相關的推論是,如第3節所提到的,
接口摩擦角ΔW回填和面對壁之間被激活是
大於接口摩擦角度小沿著幾乎垂直背面激活
懸臂型壁的回填內。在另一方面,觀測值
比對加筋土的預測值,1型模型牆稍大,
為加筋土,2型模型牆,明顯大。
較大的觀測至關重要地震係數為鋼筋土城牆可能是
由於在旋轉(第3節)的中心位置的差 即中心
旋轉移動從壁面遠進入回填承載力失敗後
在重力型的情況下,面向下方的地基,傾斜型和
懸臂型的壁。相同點從背面旋轉的距離
壁是在加筋土壁的情況下少,由於回填的靈活性。
正在翻譯中..
結果 (繁體中文) 3:[復制]
復制成功!
對於所有的模型中,主要的破壞模式的牆壁傾覆所示如圖1所示。從圖6看出,位移量測的向外位移感測器D1附近的加筋土的底部,1型牆面是遠小於由位移感測器量測的頂部的頂部附近,D3。這表明,所面臨的位移的過渡組成部分是多小於其旋轉分量。還應注意的是,地基立即在前面的面對遭受了輕微的起伏,作為量測位移感測器D4,這可能是由於在地基承載力失效的發生在下麵的。為了比較不同壁類型的相對穩定性,觀察到的臨界加速度被定義為基本加速度的振幅(通過加速度計量測所有的圖6)處於活動狀態(對應於負加速度在圖6中的值時,在頂部的向外位移達到5%的總牆高(約25毫米)。注意,向外位移後在頂部的頂部,面對超過5%的總牆高,位移開始以一種不可控制的管道新增,通常是由位移表現出來的圖6變頻器的D3。在圖14中,觀察到的臨界地震加速度係數KH Cr(OBS),是與預測的臨界地震加速度係數相比,KH Cr(CAL),這導致安全的統一因素傾覆δ= 3 / 4φ。為了這個比較,加速度(見錶1所觀察到的臨界加速度)進行了轉換利用方程1的地震係數。對於懸臂型、傾斜式和重力式模型壁,所觀察到的值幾乎等於或小於對傾覆的預測值。這個相對差在重力型、傾斜型和懸臂型的順序比較大牆。重力型小觀測臨界地震係數和傾斜式牆壁可能與推論,如在第3節中提到的,介面摩擦角δW活性的回填和牆面之間小於介面摩擦角沿幾乎垂直的背面在懸臂型牆的回填中。另一方面,觀察到的值略大於加筋土的預測值,1型模型牆,並明顯較大的加筋土,2型模型牆。觀察到的更大的觀察到的臨界地震係數的加筋土的牆壁可能是由於旋轉中心的位置的不同(第3節),即中心旋轉從牆面移動到回填後的承載能力故障在重力式、傾斜式和正下方的情况下的地基懸臂型牆。從後面的同一點的距離牆是較少的情况下,加固土牆由於回填的靈活性。
正在翻譯中..
 
其它語言
本翻譯工具支援: 世界語, 中文, 丹麥文, 亞塞拜然文, 亞美尼亞文, 伊博文, 俄文, 保加利亞文, 信德文, 偵測語言, 優魯巴文, 克林貢語, 克羅埃西亞文, 冰島文, 加泰羅尼亞文, 加里西亞文, 匈牙利文, 南非柯薩文, 南非祖魯文, 卡納達文, 印尼巽他文, 印尼文, 印度古哈拉地文, 印度文, 吉爾吉斯文, 哈薩克文, 喬治亞文, 土庫曼文, 土耳其文, 塔吉克文, 塞爾維亞文, 夏威夷文, 奇切瓦文, 威爾斯文, 孟加拉文, 宿霧文, 寮文, 尼泊爾文, 巴斯克文, 布爾文, 希伯來文, 希臘文, 帕施圖文, 庫德文, 弗利然文, 德文, 意第緒文, 愛沙尼亞文, 愛爾蘭文, 拉丁文, 拉脫維亞文, 挪威文, 捷克文, 斯洛伐克文, 斯洛維尼亞文, 斯瓦希里文, 旁遮普文, 日文, 歐利亞文 (奧里雅文), 毛利文, 法文, 波士尼亞文, 波斯文, 波蘭文, 泰文, 泰盧固文, 泰米爾文, 海地克里奧文, 烏克蘭文, 烏爾都文, 烏茲別克文, 爪哇文, 瑞典文, 瑟索托文, 白俄羅斯文, 盧安達文, 盧森堡文, 科西嘉文, 立陶宛文, 索馬里文, 紹納文, 維吾爾文, 緬甸文, 繁體中文, 羅馬尼亞文, 義大利文, 芬蘭文, 苗文, 英文, 荷蘭文, 菲律賓文, 葡萄牙文, 蒙古文, 薩摩亞文, 蘇格蘭的蓋爾文, 西班牙文, 豪沙文, 越南文, 錫蘭文, 阿姆哈拉文, 阿拉伯文, 阿爾巴尼亞文, 韃靼文, 韓文, 馬來文, 馬其頓文, 馬拉加斯文, 馬拉地文, 馬拉雅拉姆文, 馬耳他文, 高棉文, 等語言的翻譯.

Copyright ©2025 I Love Translation. All reserved.

E-mail: