The present work examined the relationship between carotenoids in the macula, diet, and serum, and their relationship with hippocampal-dependent relational memory performance. Given previous literature indicating that lutein disproportionately accumulates in neural tissue, including the hippocampus, we anticipated that serum and macular lutein concentrations, in particular, would be related to relational memory. Herein, the results indicated that higher serum, but not macular, lutein concentrations were positively associated with greater relational memory performance on a spatial reconstruction task. Although dietary lutein + zeaxanthin and both dietary and serum beta-carotene were correlated with performance, these relationships did not persist after covariate adjustment. Taken together, these findings provide additional evidence that serum carotenoid status may impact memory performance among adults who are overweight or obese.
The present work examined the relationship between carotenoids in the macula, diet, and serum, and their relationship with hippocampal-dependent relational memory performance. Given previous literature indicating that lutein disproportionately accumulates in neural tissue, including the hippocampus, we anticipated that serum and macular lutein concentrations, in particular, would be related to relational memory. Herein, the results indicated that higher serum, but not macular, lutein concentrations were positively associated with greater relational memory performance on a spatial reconstruction task. Although dietary lutein + zeaxanthin and both dietary and serum beta-carotene were correlated with performance, these relationships did not persist after covariate adjustment. Taken together, these findings provide additional evidence that serum carotenoid status may impact memory performance among adults who are overweight or obese.
正在翻譯中..