The term systems science is used here to refer to bringing to problem solving a perspective in which the problem space is conceptualized as a system of interrelated component parts (i.e., the “big picture”). This term was chosen in lieu of several others that may be synonymous, such as systems thinking or complexity, because some terms are associated with a particular “brand” of thought, and the authors feel that systems science is neutral while also inclusive. The system is viewed as a coherent whole, while the relationships among the components are also recognized and seen as critical to the system, for they give rise to the emergent properties of the system. Emergent properties are those properties that can only be seen at the system level and are not attributes of the individual components themselves (e.g., a flock emerges when a group of birds flies together; it is a property of the system, not of any individual bird). Systems science offers insights into the nature of the whole system that often cannot be gained by studying the component parts in isolation. Moreover, in a systems approach, there is recognition that embedded in the system are feedback loops, stocks and flows, that change over time (i.e., dynamic, nonlinear, complexity of the system).
The term systems science is used here to refer to bringing to problem solving a perspective in which the problem space is conceptualized as a system of interrelated component parts (i.e., the “big picture”). This term was chosen in lieu of several others that may be synonymous, such as systems thinking or complexity, because some terms are associated with a particular “brand” of thought, and the authors feel that systems science is neutral while also inclusive. The system is viewed as a coherent whole, while the relationships among the components are also recognized and seen as critical to the system, for they give rise to the emergent properties of the system. Emergent properties are those properties that can only be seen at the system level and are not attributes of the individual components themselves (e.g., a flock emerges when a group of birds flies together; it is a property of the system, not of any individual bird). Systems science offers insights into the nature of the whole system that often cannot be gained by studying the component parts in isolation. Moreover, in a systems approach, there is recognition that embedded in the system are feedback loops, stocks and flows, that change over time (i.e., dynamic, nonlinear, complexity of the system).
正在翻譯中..
