Unfortunately, modern cultivation techniques have resulted in progress的繁體中文翻譯

Unfortunately, modern cultivation t

Unfortunately, modern cultivation techniques have resulted in progressively reducedAMfungaldiversity and frequency in agricultural soils and potting substrates, an effect that is believed to berelated to tillage methods, the use of mineral fertilizers and nursery substrate sterilization amongother factors [19]. In consequence, the external application of mycorrhizal spores has been practiced,adding AMF inoculum either to seedlings’ growing medium or into the planting hole at time oftransplanting. Because of this, two main agronomic benefits are expected: superior growth ofseedlings in the nursery and improved performance of mature plants following planting in thefield [20]. The effects of excessive salinity on plant growth and vitality involve: reduction in theosmotic potential of the soil solution causing physiological drought, nutrient imbalance caused byreduced nutrient uptake and/or transport to the shoot, and direct cell toxicity of excessive Na orCl ion concentrations [21]. The salinity effect on plants can be described as an two-phase growthresponse [22]. In the first phase the excess salt ion concentration outside the roots is lowering theosmotic potential of the soil [22], making it harder for the plants to extract water and causing waterstress. An immediate response to this effect, which also mitigates ion flux to the shoot, is stomatalclosure [5]. The second, ion specific, phase corresponds to the excess accumulation of salt ions intissues, especially the leaf blade. The consequences of Na+ or Cl build-up in the cell walls are oftencatastrophic and include dehydration and oxidative stress [22,23], finally causing leaf dieback. If therate of leaf dieback is faster than the rate of leaf expansion, then the amount of reserve carbohydrateper plant will be reduced in proportion to the reduction in leaf area [24]. The main acclimatizationstrategy for glycophytes to excess soil salinity levels is to control ion flux into root xylem and as theresult, restrict also nutrient ion movement to the shoot [25]. Furthermore, several ions such as Pbecome rather unavailable—P precipitates with Ca2+, Mg2+ and Zn2+ ions in saline soil [26].
0/5000
原始語言: -
目標語言: -
結果 (繁體中文) 1: [復制]
復制成功!
Unfortunately, modern cultivation techniques have resulted in progressively reducedAMfungal<br>diversity and frequency in agricultural soils and potting substrates, an effect that is believed to be<br>related to tillage methods, the use of mineral fertilizers and nursery substrate sterilization among<br>other factors [19]. In consequence, the external application of mycorrhizal spores has been practiced,<br>adding AMF inoculum either to seedlings’ growing medium or into the planting hole at time of<br>transplanting. Because of this, two main agronomic benefits are expected: superior growth of<br>seedlings in the nursery and improved performance of mature plants following planting in the<br>field [20]. The effects of excessive salinity on plant growth and vitality involve: reduction in the<br>osmotic potential of the soil solution causing physiological drought, nutrient imbalance caused by<br>reduced nutrient uptake and/or transport to the shoot, and direct cell toxicity of excessive Na or<br>Cl ion concentrations [21]. The salinity effect on plants can be described as an two-phase growth<br>response [22]. In the first phase the excess salt ion concentration outside the roots is lowering the<br>osmotic potential of the soil [22], making it harder for the plants to extract water and causing water<br>stress. An immediate response to this effect, which also mitigates ion flux to the shoot, is stomatal<br>closure [5]. The second, ion specific, phase corresponds to the excess accumulation of salt ions in<br>tissues, especially the leaf blade. The consequences of Na+ or Cl build-up in the cell walls are often<br>catastrophic and include dehydration and oxidative stress [22,23], finally causing leaf dieback. If the<br>rate of leaf dieback is faster than the rate of leaf expansion, then the amount of reserve carbohydrate<br>per plant will be reduced in proportion to the reduction in leaf area [24]. The main acclimatization<br>strategy for glycophytes to excess soil salinity levels is to control ion flux into root xylem and as the<br>result, restrict also nutrient ion movement to the shoot [25]. Furthermore, several ions such as P<br>變得相當在鹽土[26]與鈣離子,鎂離子和Zn2不可用-P析出物+離子。
正在翻譯中..
結果 (繁體中文) 2:[復制]
復制成功!
不幸的是,現代栽培技術已經導致逐漸減少的真菌<br>農業土壤和灌注基板的多樣性和頻率,這種效應被認為是<br>與耕作方法、礦物肥料的使用和育苗基質滅菌有關。<br>其他因素[19]。因此,已經實踐了黴菌孢子的外部應用,<br>在幼苗生長介質中或到育苗孔中加入AMF接種液。<br>移植。因此,預計有兩個主要的農藝效益:優越的增長<br>育苗,提高成熟植物在種植後的性能。<br>欄位 [20]。過量的鹽度對植物生長和活力的影響包括:減少<br>土壤溶液的滲透潛力引起生理乾旱,養分失衡引起<br>減少營養的攝取和/或運輸到芽,和直接細胞毒性的過度Na或<br>Cl ion 濃度 [21]。鹽度對植物的影響可描述為兩相生長<br>回應 [22]。在第一階段,根部外的過量鹽子濃度降低<br>土壤的滲透電位[22],使植物更難提取水分,導致水<br>應力。這種效果的即時反應,也減輕了對拍攝的磁通量,是蒸汽<br>閉合 [5]。第二,離子特異性,相對應鹽離子在<br>組織,尤指葉葉。Na+ 或 Cl 在細胞壁中積聚的後果通常是<br>災難性,包括脫水和氧化應激[22,23],最終導致葉片枯萎。如果<br>葉退壓速度快于葉膨脹速度,則後備碳水化合物的含量<br>每株植物將減少與葉面積減少的比例[24]。主要適應<br>糖化劑對土壤鹽度過剩的策略是控制進入根表的磁通量,並作為<br>結果,也限制營養性子運動到拍攝[25]。此外,幾個離子,如P<br>變得相當不可用[P沉澱與Ca2+,Mg2+和Zn2+離子在鹽鹼土壤[26]。
正在翻譯中..
結果 (繁體中文) 3:[復制]
復制成功!
不幸的是,現代栽培技術已經逐漸减少了真菌的數量<br>農業土壤和盆栽基質的多樣性和頻率<br>有關耕作方法、礦物肥料的使用和苗圃基質消毒<br>其他因素[19]。囙此,菌根孢子的外用已經得到實踐,<br>在幼苗生長培養基中加入AMF菌劑或在<br>移植。囙此,預計有兩個主要的農藝效益:<br>苗圃育苗及提高成株後的效能<br>欄位[20]。過度鹽分對植物生長和活力的影響包括:减少<br>土壤溶液滲透勢引起的生理乾旱、養分不平衡<br>减少養分吸收和/或運輸到地上部,以及過量Na或<br>氯離子濃度[21]。鹽分對植物的影響可以描述為兩個階段的生長<br>答覆[22]。在第一階段,根外過量的鹽離子濃度降低了<br>土壤的滲透勢[22],使植物更難選取水分並產生水分<br>強調。對這種效應的一個直接反應是氣孔,它也能減緩離子流到莖上<br>結束語[5]。第二種,離子特异相,對應於鹽離子在<br>組織,尤指葉片。細胞壁中Na+或Cl積累的結果通常是<br>災難性的,包括脫水和氧化應激[22,23],最終導致葉片枯死。如果<br>葉片枯死速率大於葉片膨大速率,然後是貯藏碳水化合物的量<br>每株植物將按葉面積減少的比例减少[24]。主要馴化<br>糖原植物對過量土壤鹽分的控制策略是控制離子進入根木質部,並且<br>結果,也限制了營養離子在枝條上的運動[25]。此外,一些離子如P<br>在鹽漬土中與Ca2+、Mg2+和Zn2+離子形成相當不可用的-P沉澱物[26]。<br>
正在翻譯中..
 
其它語言
本翻譯工具支援: 世界語, 中文, 丹麥文, 亞塞拜然文, 亞美尼亞文, 伊博文, 俄文, 保加利亞文, 信德文, 偵測語言, 優魯巴文, 克林貢語, 克羅埃西亞文, 冰島文, 加泰羅尼亞文, 加里西亞文, 匈牙利文, 南非柯薩文, 南非祖魯文, 卡納達文, 印尼巽他文, 印尼文, 印度古哈拉地文, 印度文, 吉爾吉斯文, 哈薩克文, 喬治亞文, 土庫曼文, 土耳其文, 塔吉克文, 塞爾維亞文, 夏威夷文, 奇切瓦文, 威爾斯文, 孟加拉文, 宿霧文, 寮文, 尼泊爾文, 巴斯克文, 布爾文, 希伯來文, 希臘文, 帕施圖文, 庫德文, 弗利然文, 德文, 意第緒文, 愛沙尼亞文, 愛爾蘭文, 拉丁文, 拉脫維亞文, 挪威文, 捷克文, 斯洛伐克文, 斯洛維尼亞文, 斯瓦希里文, 旁遮普文, 日文, 歐利亞文 (奧里雅文), 毛利文, 法文, 波士尼亞文, 波斯文, 波蘭文, 泰文, 泰盧固文, 泰米爾文, 海地克里奧文, 烏克蘭文, 烏爾都文, 烏茲別克文, 爪哇文, 瑞典文, 瑟索托文, 白俄羅斯文, 盧安達文, 盧森堡文, 科西嘉文, 立陶宛文, 索馬里文, 紹納文, 維吾爾文, 緬甸文, 繁體中文, 羅馬尼亞文, 義大利文, 芬蘭文, 苗文, 英文, 荷蘭文, 菲律賓文, 葡萄牙文, 蒙古文, 薩摩亞文, 蘇格蘭的蓋爾文, 西班牙文, 豪沙文, 越南文, 錫蘭文, 阿姆哈拉文, 阿拉伯文, 阿爾巴尼亞文, 韃靼文, 韓文, 馬來文, 馬其頓文, 馬拉加斯文, 馬拉地文, 馬拉雅拉姆文, 馬耳他文, 高棉文, 等語言的翻譯.

Copyright ©2024 I Love Translation. All reserved.

E-mail: